Skip to main content
Log in

Population structure of the Spanish sardine Sardinella aurita: natural morphological variation in a genetically homogeneous population

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The population structure of the Spanish sardine Sardirella aurita in the coastal waters of Florida, USA, was examined using protein electrophoresis (one sample from Charleston, South Carolina, was analyzed as a geographic outlier), morphometrics, and meristics. Electrophoresis of proteins coded by 37 presumed genetic loci revealed low levels of genetic variation, little allele frequency variation among samples, and low genetic distances between samples. Gene flow was high and effectively homogenized genetic variation among sample locations, indicating that a single, panmictic population of Spanish sardines exists at least from South Carolina to the Florida panhandle. Size-corrected principal-components analyses performed on the morphometric data (collected in the form of a truss network) revealed regional allometric patterns. These patterns were most apparent in small fish and less obvious in larger fish, implying that the regional morphological patterns may diminish as the fish grow. Regressions of gill-raker number on fork length demonstrated regional patterns similar to those seen in the morphometric analyses. The absence of genetic evidence for geographic populational structuring and the apparent ontogenetic plasticity of body shape suggests that the morphological variation may be ecophenotypic. Alternatively, the electrophoretic analyses may not have detected substructuring that exists. Both the morphometric and meristic data tended to group samples collected from embayments separately from samples collected from more oceanic environments, implying that proximity to embayments may influence some of the observed morphological variation. It appears that for Spanish sardines, as for other clupeids, protein electrophoresis is useful in determining the evolutionary patterns of population structuring, and morphological analyses are of merit in studying short-term, environmentally induced variation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allendorf, F. W., Ryman, N., Utter, F. M. (1987). Genetics and fishery management. In: Ryman, N., Utter, F. (eds.) Population genetics and fishery management. University of Washington, Seattle, p. 1–19

    Google Scholar 

  • Bert, T. M. (1986). Speciation in western Atlantic stone crabs (genus Menippe): the role of geological processes and climatic events in the formation and distribution of species. Mar. Biol. 93: 157–170

    Google Scholar 

  • Burnaby, T. P. (1966). Growth-invariant discriminant functions and generalized distances. Biometrics 22: 96–110

    Google Scholar 

  • Cushing, D. H. (1971). The dependence of recruitment on parent stock in different groups of fishes. J. Cons. int. Explor. Mer 33: 340–362

    Google Scholar 

  • Fisher, W. (ed.) (1978). FAO species identification sheets for fishery purposes. Western central Atlantic (Fishing area 31). Vol. II. FAO, Rome

    Google Scholar 

  • Grant, W. S. (1984). Biochemical population genetics of Atlantic herring, Clupea harengus. Copeia 1984: 357–364

    Google Scholar 

  • Grant, W. S., Utter, F. M. (1984). Biochemical population genetics of pacific herring (Clupea pallasi). Can J. Fish. aquat. Sciences 41: 856–864

    Google Scholar 

  • Harris, H., Hopkinson, D. A. (1976). Handbook of enzyme electrophoresis in human genetics. American Elsevier Publishing Co., Inc., New York

    Google Scholar 

  • Hedgecock, D., Hutchinson, E. S., Li, G., Sly, F. L., Nelson, K. (1989). Genetic and morphometric variation in the Pacific sardine, Sardinops sagax caerulea: comparisons and contrasts with historical data and variability in the Northern anchovy, Engraulis mordax. Fish. Bull. U.S. 87: 653–671

    Google Scholar 

  • Hildebrand, S. F. (1963). Genus Sardinella Cuvier and Valenciennes, 1847, Spanish sardines Mem. Sears Fdn mar. Res. 1: 397–411

    Google Scholar 

  • Hopkins, T. L. (1977). Zooplankton distribution in surface waters of Tampa Bay, Florida. Bull. mar. Sci. 27: 467–478

    Google Scholar 

  • Hopkins, T. L., Milliken, D. M., Bell, L. M., McMichael, E. J., Heffernan, J. J., Cano, R. V. (1981). The landward distribution of oceanic plankton and micronekton over the west Florida continental shelf as related to their vertical distribution. J. Plankton Res. 3: 645–658

    Google Scholar 

  • Houde, E. D. (1976). Abundance and potential for fisheries development of some sardine-like fishes in the eastern Gulf of Mexico. Proc. Gulf Caribb. Fish. Inst. 28: 73–82

    Google Scholar 

  • Humphries, J. M., Bookstein, F. L., Chernoff, B., Smith, G. R., Elder, R. L., Poss, S. G. (1981). Multivariate discrimination by shape in relation to size. Syst. Zool. 30: 291–308

    Google Scholar 

  • Johnson, A. G., Vaught, R. N. (1986). Species profile of Spanish sardine (Sardinella aurita). NOAA natn. mar. Fish. Serv. tech. Memo U.S. Dep. Commerce NMFS-SEFC- 187: 1–82

    Google Scholar 

  • Karl, S. A., Avise, J. C. (1992). Balancing selection at allozyme loci in oysters: implications from nuclear RFLPs. Science, N.Y. 256: 100–102

    Google Scholar 

  • Kornfield, I., Sidell, B. D., Gagnon, P. S. (1982). Stock definition in Atlantic herring (Clupea harengus harengus): genetic evidence for discrete fall and spring spawning populations. Can. J. Fish. aquat Sciences 39: 1610–1621

    Google Scholar 

  • Latini, E., Pettorossi, L. (1977). Osservazioni sui caratteri biometrici e meristici di Sardinella, aurita Valencienne nell' alto Adriatico (Pisces, Clupeidae). Quad. Lab. Tecnol. Pesca 2: 143–151

    Google Scholar 

  • Leary, R. F., Allendorf, F. W., Knudsen, K. L. (1985). Developmental stability and high meristic counts in interspecific hybrids of salmonid fishes. Evolution 39: 1318–1326

    Google Scholar 

  • Mitton, J. B., Lewis, W. M., Jr. (1989). Relationships between genetic variability and life-history features of bony fishes. Evolution 43: 1712–1723

    Google Scholar 

  • Montero, G. V., Perez, J. E. (1981). Relaciones taxonómicas entre algunas espécies de la familia Clupeidae (Pisces). Boln Inst. oceanogr. Univ. Oriente (Cumaná, Venezuela) 20: 79–84

    Google Scholar 

  • Naughton, S. P., Saloman, C. H. (1984). Food of bluefish (Pomatomus saltatrix) from the U.S. south Atlantic and Gulf of Mexico. NOAA natn. mar. Fish. Serv. tech. Memo U.S. Dep. Commerce NMFS-SEFC- 150: 1–37

    Google Scholar 

  • Naughton, S. P., Saloman, C. H. (1985). Food of gag (Mycteroperca microlepis) from North Carolina and three areas of Florida. NOAA natn. mar. Fish. Serv. tech. Memo U.S. Dep. Commerce NMFS-SEFC- 150: 160: 1–37

    Google Scholar 

  • Nei, M. (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, Austin, Tex. 89: 583–590

    Google Scholar 

  • Paul, J. H., Jeffrey, W. H., DeFlaun, M. (1985). Particulate DNA in subtropical oceanic and estuarine planktonic environments. Mar. Biol. 90: 95–101

    Google Scholar 

  • Rice, W. R. (1989). Analyzing tables of statistical tests. Evolution 43: 223–225

    Google Scholar 

  • Ryman, N., Lagercrantz, U., Andersson, L., Chakraborty, R., Rosenberg, R. (1984). Lack of correspondence between genetic and morphological variability patterns in Atlantic herring (Clupea harengus). Heredity 53: 687–704

    Google Scholar 

  • Saloman, C. H., Naughton, S. P. (1983). Food of the king mackerel, Scomberomorus cavalla, from the southeastern United States including the Gulf of Mexico. NOAA natn. mar. Fish. Serv. tech. Memo U.S. Dep. Commerce NMFS-SEFC 126: 1–25

    Google Scholar 

  • SAS Institute Inc. (1985). SAS user's guide: statistics. Version 5 edn. SAS Institute Inc., Cary, North Carolina

    Google Scholar 

  • Schaal, B. A., Anderson, W. W. (1974). An outline of techniques for starch gel electrophoresis of enzymes from the American oyster Crassostrea virginica Gmelin. Tech. Rep. Ser. Ga mar. Sci. Cent. Savannah 74–3: 1–17

    Google Scholar 

  • Selander, R. K., Smith, R. H., Yang, S. Y., Johnson, W. E., Gentry, J. B. (1971). Biochemicla polymorphism and systematics in the genus Peromyscus. I. Variation in the old-field mouse (Peromyscus polionotus). Stud. Genet., Austin, Tex. 6: 49–90 (Univ. Tex. Publ. No. 7103)

    Google Scholar 

  • Slatkin, M. (1985). Rare alleles as indicators of gene flow. Evolution 39: 53–65

    Google Scholar 

  • Smith, P. J., Jujio, Y. (1982). Genetic variation in marine teleosts: high variability in habitat specialists and low variability in habitat generalists. Mar. Biol. 69: 7–20

    Google Scholar 

  • Smith, P. J., Jamieson, A. (1986). Stock discreteness in herrings: a conceptual revolution. Fish. Res. 4: 223–234

    Google Scholar 

  • Sokal, R. R., Rohlf, R. J. (1981). Biometry. The principles and practice of statistics in biological research. 2nd edn. W. H. Freeman & Co., New York

    Google Scholar 

  • Strauss, R. E. (1985). Evolutionary allometry and variation in body form in the South American catfish genus Corydoras (Callichthyidae). Syst. Zool. 34: 381–396

    Google Scholar 

  • Swofford, D. L., Selander, R. M. (1981). BIOSYS-1: a FORTRAN program for the comprehensive analysis of electrophoretic data in population genetics and systematics. J. Hered. 72: 281–283

    Google Scholar 

  • Tringali, M. J., Wilson, R. R. (1993). Mitochondrial DNA restriction site analysis of the Spanish sardine. Fish. Bull. U.S. 91: 363–374

    Google Scholar 

  • Utter, F. M., Waples, R. S., Teel, D. J. (1992). Genetic isolation of previously indistinguishable chinook salmon populations of the Snake and Klamath Rivers: limitations of negative data. Fish. Bull. U.S. 90: 770–777

    Google Scholar 

  • Waples, R. S. (1987). A multispecies approach to the analysis of gene flow in marine shore fishes. Evolution 41: 385–400

    Google Scholar 

  • Whitehead, P. J. (1973). The clupeoid fishes of the Guianas. Bull. Br. Mus. nat. Hist. (Zool.) 5: 1–219

    Google Scholar 

  • Whitehead, P. J. (1985). Clupeoid fishes of the world (suborder Clupeoidei). F.A.O. Fish. Synopsis 125 (7): 1–303

    Google Scholar 

  • Wilson, R. R., Jr., Alberdi, P. D., Jr. (1991). An electrophoretic study of Spanish sardine suggests a single predominant species in the western Atlantic, Sardinella aurita. Can. J. Fish. aquat. Sciences 48: 792–798

    Google Scholar 

  • Wimberger, P. H. (1992). Plasticity of fish body shape. The effects of diet, development, family and age in two species of Geophagus (Pisces: Cichlidae). Biol. J. Linn. Soc. 45: 197–218

    Google Scholar 

  • Wright, S. (1943). Isolation by distance. Genetics, Princeton 28: 114–138

    Google Scholar 

  • Wright, S. (1978). Evolution and the genetics of populations. Vol. 4. Variation within and among natural populations. University of Chicago Press, Chicago

    Google Scholar 

  • Zar, J. H. (1974). Biostatistical analysis. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by N. H. Marcus, Tallahassee

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kinsey, S.T., Orsoy, T., Bert, T.M. et al. Population structure of the Spanish sardine Sardinella aurita: natural morphological variation in a genetically homogeneous population. Marine Biology 118, 309–317 (1994). https://doi.org/10.1007/BF00349798

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00349798

Keywords

Navigation