Skip to main content
Log in

Incorporation of dietary sterols by the sea scallop Placopecten magellanicus (Gmelin) fed on microalgae

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The anatomical distributions of sterols and the incorporation of dietary phytosterols into different organs were studied in two populations of sea scallops, Placopecten magellanicus Gmelin, collected in 1989 from Georges Bank (Nova Scotia) and St. Pierre Bank (Newfoundland), respectively. In contrast to the well-established organ-specific lipid classes and fatty-acid compositions usually found in marine animals, the major organs of wild sea scallops (adductor muscle, digestive gland, gonads, gills and mantle) had the same sterol compositions. In order to know if anisomyarian bivalves require a uniform anatomical distribution of sterols, wild scallops were subjected to a microalgal diet containing high concentrations of brassicasterol, β-sitosterol and cholesterol. The sterol composition of the scallop adductor muscle was not changed by 6 wk of feeding on the experimental diet. In contrast, the proportions of brassicasterol, β-sitosterol and cholesterol in the digestive gland, and of brassicasterol and cholesterol in the male gonad, increased significantly (p<0.05). These results showed that the typical even anatomical distribution of sterols of bivalves can be disrupted by a drastic change in diet and is therefore not subject to strict internal regulation. Furthermore, the P. magellanicus results indicate that, although sea scallops may be capable of sterol biosynthesis, the incorporation of unmodified dietary phytosterols plays an influential role in establishing their sterol composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackman, R. G. (1980). Application of 25 and 50 meter fused silica open-tubular columns to rapeseed oil analyses. In: Daun, J.K., McGregor, D. I., McGregor, E. E. (eds.) Proceedings of a symposium. Analytical chemistry of rapessed and its products. The Canola Council of Canada, Winnipeg, Manitoba, p. 103–111

    Google Scholar 

  • Ackman, R. G. (1983). Fatty acid metabolism of bivalves. In: Pruder, G. D., Langdon, C., Conklin, D. (eds.). Biochemical and physiological approaches to shellfish nutrition. Proceedings of the 2nd conference on aquaculture nutrition, No. 2. Louisiana State University, Baton Rouge, p. 358–376

    Google Scholar 

  • Ackman, R. G. (1986). WCOT (capillary) gas-liquid chromatography. In: Hamilton, R. J., Rossell, J. B. (eds.) Analysis of oils and fats. Elsevier, New York, p. 127–206

    Google Scholar 

  • Ackman, R. G., McLeod, C. A., Banerjee, A. K. (1990). An overview of analyses by Chromarod-Iatroscan TLC-FID. J Planar Chrom. 3:450–490

    Google Scholar 

  • Berenberg, C. J., Patterson, G. W. (1981). The relationship between dietary phytosterols and the sterols of wild and cultivated oysters. Lipids 16: 276–278

    Google Scholar 

  • Bligh, E. G., Dyer, D. J. (1959). A rapid method for total lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911–917

    Google Scholar 

  • Bradshaw, S. A., O'Hara, S. C. M., Corner, E. D. S., Eglinton, G. (1991). Effects on dietary lipids of the marine bivalve Scrobicularia plana feeding in different modes. J. mar. biol. Ass. U.K. 71: 635–653

    Google Scholar 

  • Enright, C. T. (1984). Determination of the relative value of phytoplankton for feeding the juvenile oyster, Ostrea edulis. Ph. D. Thesis. Dalhousie University, Halifax, Canada

    Google Scholar 

  • Enright, C. T., Newkirk, G. F., Craigie, J. S., Castell, J. D. (1986). Evaluation of phytoplankton as diets for juvenile Ostrea edulis L. J. exp. mar. Biol. Ecol. 96: 1–13

    Google Scholar 

  • Goad, L. J. (1976). The steroids of marine algae and invertebrate animals. In: Malins, D. G., Sargent, J. R. (eds.) Biochemical and biophysical perspectives in marine biology, Vol. 4. Academic Press, New York, p. 213–317

    Google Scholar 

  • Gordon, D. T., Collins, N. (1982). Anatomical distribution of sterols in oysters (Crassostrea gigas). Lipids 17: 811–817

    Google Scholar 

  • Guillard, R. R. L., Ryther, J. H. (1962). Studies on marine plankton diatoms. I. Cyclotella nana Hustedt and Detonula cofervacea (Cleve). Can. J. Microbiol. 8: 229–239

    Google Scholar 

  • Holden, M. J., Patterson, G. W. (1991). Absence of sterol biosynthesis in oyster culture. Lipids 26: 81–82

    Google Scholar 

  • Idler, D. R., Tamura, T., Wainai, T. (1964). Seasonal variation in the sterol, fat and unsaponifiable components in scallop muscle. J. Fish. Res. Bd. Can. 21: 1035–1042

    Google Scholar 

  • Idler, D. R., Wiseman, P. (1971a). Sterols in molluscs. Int. J. Biochem. 2: 516–528

    Google Scholar 

  • Idler, D. R., Wiseman, P. (1971b). Identification of 22-cis-cholesta-5-22-diene-3-β-ol and other scallop sterols by gas-liquid chromatography and mass spectrometry. Comp. Biochem. Physiol. 38A: 581–590

    Google Scholar 

  • Idler, D. R., Wiseman, P., Safe, L. M. (1970). A new marine sterol, 22-trans-24-norcholesta-5,22-diene-3-β-ol. Steroids (Oakland, Calif.). 16: 451–461

    Google Scholar 

  • Jarzebski, A., Wenne, R., Habermehl, G. (1986). Anatomical distribution of lipids and sterols in Macoma balthica (L.). Comp. Biochem. Physiol. 85B: 135–137

    Google Scholar 

  • Joseph, J. D. (1977). Idetification of 3,6,9,12,15-octadecapentaenoic acid in laboratory-cultured photosynthetic dinoflagellates. Lipids 10: 395–403

    Google Scholar 

  • Joseph, J. D. (1982). Lipid composition of marine and estuarine invertebrates. Part II: Mollusca. Prog. Lipid Res. 21: 109–153

    Google Scholar 

  • Joseph, J. D. (1989). Distribution and composition of lipids in marine invertebrates. In: Ackman, R. G. (ed.) Marine biogenic lipids, fats, and oils, Vol II. CRC Press, Boca Raton, Florida, p. 49–143

    Google Scholar 

  • MacDonald, B. A., Thompson, R. J. (1985a). Influence of temperature and food availability on the ecological energetics of the giant scallop Placopecten magellanicus. I. Growth rate of shell and somatic tissue. Mar. Ecol. Prog. Ser. 25: 279–294

    Google Scholar 

  • MacDonald, B. A., Thompson, R. J. (1985b). Influence of temperature and food availability on the ecological energetics of the giant scallop Placopecten magellanicus. II. Reproductive output and total production. Mar. Ecol. Prog. Ser. 25: 295–303

    Google Scholar 

  • Mayzaud, P., Eaton, C. A., Ackman, R. G. (1976). The occurrence and distribution of octadecapentaenoic acid in a natural plankton population. A possible food chain index. Lipids 11: 858–862

    Google Scholar 

  • Morris, R. J., Culkin, F. (1977). Marine lipids: sterols. Oceanogr. mar. Biol. A. Rev. 15: 73–102

    Google Scholar 

  • Napolitano, G. E. (1991). Marine food chains: effect of phytoplankters and depth on the organ lipids of the sea scallop Placopecten magellanicus (Gmelin) and of intertidal invertebrates on the fat reserves of shorebirds. Ph. D. Thesis, Dalhousie University, Halifax, Canada

    Google Scholar 

  • Napolitano, G. E., Ackman, R. G., Ratnayake, W. M. N. (1990). Fatty acid composition of three cultured algal species (Isochrysis galbana, Chaetoceros gracilis and Chaetoceros calcitrans) used as food for bivalve larvae. J. Wld Aquacult. Soc. 12: 122–130

    Google Scholar 

  • Napolitano, G. E., MacDonald, B. A., Thompson, R. J., Ackman, R. G. (1992). Lipid composition of eggs and adductor muscle in giant scallops (Placopecten magellanicus Gmelin) from different habitats. Mar. Biol. 113: 71–76

    Google Scholar 

  • Napolitano, G. E., Ratnayake, W. M. N., Ackman, R. G. (1988). Fatty acid components of larval Ostrea edulis (L.): importance of triacylglycerols as a fatty acid reserve. Comp. Biochem. Physiol. 90B: 875–883

    Google Scholar 

  • Nes, W. R. (1974). Role of sterols in membranes. Lipids 9: 596–611

    Google Scholar 

  • Patterson, G. W., Khalil, M. W., Idler, D. R. (1975). Sterols of scallop. I. Application of hydrophobic Sephadex derivatives to the resolution of complex mixtures of marine sterols. J. Chromat. 115: 153–159

    Google Scholar 

  • Piretti, M. V., Zuppa, F., Pagliuca, G. (1989). Anatomical distribution of sterols in the bivalve mollusc Scapharca inaequivalvis (Bruguiere). Comp. Biochem. Physiol. 93B: 819–822

    Google Scholar 

  • Robinson, W. E., Wehling, W. E., Morse, P., McLeod, G. C. (1981). Seasonal changes in soft-body component indices and energy reserves in the Atlantic deep-sea scallop Placopecten magellanicus. Fish. Bull. U.S. 79: 449–458

    Google Scholar 

  • Sargent, J. R., Parkes, R. J., Mueller-Harvey, I., Henderson, R. J. (1987). Lipid biomarkers in marine ecology. In: Sleigh, M. A. (ed.) Microbes in the sea. John Wiley and Sons, New York, p. 119–138

    Google Scholar 

  • Scheuer, P. J. (1977). The varied and fascinating chemistry of marine molluscs. Israel J. Chem. 16: 52–56

    Google Scholar 

  • Snedecor, G. W., Cochran, W. G. (1980). Statistical methods. Iowa State University Press, Ames, Iowa

    Google Scholar 

  • Tamura, T., Truscott, B., Idler, D. R. (1964). Sterol metabolism in the oyster. J. Fish. Res. Bd Can. 21: 1519–1522

    Google Scholar 

  • Teshima, S. (1983). Sterol metabolism. In: Pruder, G. D., Langdon, C., Conklin, D. (eds.) Biochemical and physiological approaches to shellfish nutrition. Proceedings of the 2nd conference on aquaculture nutrition, No. 2. Louisiana State University, Baton Rouge, p. 205–216

    Google Scholar 

  • Teshima, S., Kanazawa, A. (1974). Biosynthesis of sterols in abalone Haliotis gurneri and mussel Mytilus edulis. Comp. Biochem. Physiol. 43B: 555–561

    Google Scholar 

  • Teshima, S., Kanazawa, A., Shimamoto, R. (1988). Anatomical distribution of sterols and fatty acids in the bivalve Mactra chinensis. Nippon Suisan Gakk. 54: 293–297

    Google Scholar 

  • Volkman, J. K. (1986). A review of sterol markers for marine and terrigenous organic matter. Org. Geochem. 9: 83–99

    Google Scholar 

  • Volkman, J. K., Smith, D. J., Eglinton, G., Forsberg, T. E., Corner, D. A. (1981). Sterol and fatty acid composition of four marine haptophycean algae. J. mar. biol. Ass. U.K. 61: 509–517

    Google Scholar 

  • Voogt, P. A. (1975). Investigations on the capacity of synthesizing 3-β-sterols in molluscs-XIII. Biosynthesis and composition of sterols in some bivalves (Anisomyaria). Comp. Biochem. Physiol. 50B: 499–504

    Google Scholar 

  • Walton, M. J., Pennock, J. F. (1972). Some studies on the biosynthesis of ubiquinones, isoprenoid alcohols, squalene and sterols by marine invertebrates. Biochem. J. 127: 471–479

    Google Scholar 

  • Yamaguchi, T., Ito, K., Hata, M. (1986). Studies on the sterols in some marine phytoplanktons. Tohoku J. Agric. Res. 37: 5–14

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by R. J. Thompson, St. John's

ORNL is managed by Martin Marietta Energy Systems for the US Department of Energy, under contract DE-ACOS-8-10R21400

Rights and permissions

Reprints and permissions

About this article

Cite this article

Napolitano, G.E., Ackman, R.G. & Silva-Serra, M.A. Incorporation of dietary sterols by the sea scallop Placopecten magellanicus (Gmelin) fed on microalgae. Marine Biology 117, 647–654 (1993). https://doi.org/10.1007/BF00349777

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00349777

Keywords

Navigation