Skip to main content
Log in

Larval period and its influence on post-larval life history: comparison of lecithotrophy and facultative planktotrophy in the aeolid nudibranch Phestilla sibogae

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The variable duration of the pelagic phase of metamorphically competent larvae of benthic marine invertebrates is set by an interaction between environmental factors and larval traits that together influence the chance that a larva will encounter and respond to a suitable settlement site. In the Hawaiian aeolid nudibranch Phestilla sibogae Bergh, an extended competent larval phase resulted in a cascade of negative effects on larval and post-larval life-history traits. When raised as fed (i.e., facultatively planktotrophic) larvae, an extended larval period resulted in lower larval survival, slightly lower metamorphic success, and delayed reproduction. When raised as unfed (i.e., lecithotrophic) larvae, an extended larval period resulted in lower larval and post-larval weights, survival, metamorphic success, and reproductive output, and also resulted in a longer juvenile period and delayed reproduction. The chance nature of locating a settlement site generally spreads these negative effects over all larvae of a cohort, and so balances the relative fitness of the genetic lineages within a population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ament, A. S. (1979). Geographic variation in relation to life history in three species of the marine gastropod genus Crepidula: growth rates of newly hatched larvae and juvenile. In: Stancyk, S. E. (ed.) Reproductive ecology of marine invertebrates. University of South Carolina Press, Columbia, p. 61–76

    Google Scholar 

  • Bayne, B. L. (1964). The responses of the larvae of Mytilus edulis (L.) to light and to gravity. Oikos 15: 162–174

    Google Scholar 

  • Bayne, B. L. (1965). Growth and the delay of metamorphosis of the larvae of Mytilus edulis (L.) Ophelia 2: 1–47

    Google Scholar 

  • Berg, C. J., Jr., Alatalo, F. P. (1982). Reproductive strategies of bivalve mollusks from deep sea hydrothermal vents and intertidal sulfide rich environments. Biol. Bull. mar. biol. Lab., Woods Hole 163: p. 397

    Google Scholar 

  • Birkeland, C., Chia, F. S., Strathamann, R. R. (1971). Development, substratum selection, delay of metamorphosis and growth in the seastar, Mediaster aequalis Stimpson. Biol. Bull. mar. biol. Lab., Woods Hole 141: 99–108

    Google Scholar 

  • Bonar, D. B. (1978). Regeneration in sea urchin larvae. Am Zool. 18: p. 581

    Google Scholar 

  • Bonar, D. B. (1979). Regeneration of larval and potential adult tissues in sea urchin larvae. Am. Zool. 19: p. 926

    Google Scholar 

  • Domanski, P. A. (1984). Giant larvae: prolonged planktonic larval phase in the asteroid Luidia sarsi. Mar. Biol. 80: 189–195

    Google Scholar 

  • Doyle, R. W. (1975). Settlement of planktonic larvae: a theory of habitat selection in varying environments. Am Nat. 109: 113–126

    Google Scholar 

  • Emlet, R. B. (1986a). Facultative planktotrophy in the tropical echinoid Clypeaster rosaceus (L.) and a comparison with obligate planktotrophy in Clypeaster subdepressus (Gray) (Clypeasterioda: Echinoidea). J. exp. mar. Biol. Ecol. 95: 183–202

    Google Scholar 

  • Emlet, R. B. (1986b). Larval production, dispersal and growth in a fjord: a case study on larvae of the sand dollar Dendraster excentricus. Mar. Ecol. Prog. Ser. 31: 245–254

    Google Scholar 

  • Hannan, C. A. (1984). Planktonic larvae may act like passive particles in turbulent near-bottom flow. Limnol. Oceangr. 29: 1108–1116

    Google Scholar 

  • Highsmith, R. C., Emlet, R. B. (1986). Delayed metamorphosis: effects on growth and survival of juvenile sand dollars (Echinoidea: Clypeasteroida) Bull. mar. Sci. 39: 347–361

    Google Scholar 

  • Hinegardner, R. T. (1969). Growth and development of the laboratory cultured sea urchin. Biol. Bull. mar. biol. Lab., Woods Hole 137: 465–475

    Google Scholar 

  • Holehan, A. M., Merry, B. J. (1986). The experimental manipulation of ageing by diet. Biol. Rev. 61: 329–368

    Google Scholar 

  • Kempf, S. C. (1981). Long-lived larvae of the gastropod Aplysia juliana: do they disperse and metamorphose or just slowly fade away? Mar. Ecol. Prog. Ser. 6: 61–65

    Google Scholar 

  • Kempf, S. C., Hadfield, M. G. (1985). Planktotrophy by the lecithotrophic larvae of a nudibranch, Phestilla sibogae (Gastropoda). Biol. Bull. mar. biol. Lab., Woods Hole 169: 119–130

    Google Scholar 

  • Knight-Jones, E. W. (1953). Decreased discrimination during setting after prolonged planktonic life in larvae of Spirorbis borealis (Surpulidae). J. mar. biol. Ass. U.K. 32: 337–345

    Google Scholar 

  • Knowlton, R. E. (1973). Larval development of the snapping shrimp Alpheus heterochaelis Say, reared in the laboratory. J. nat. Hist. 7: 273–306

    Google Scholar 

  • Levin, L. A., Caswell, H., DePatra, K. D., Creed, E. L. (1987). Demographic consequences of larval development mode: planktotrophic versus lecithotrophy in Streblospio benedictii. Ecology 68: 1877–1886

    Google Scholar 

  • Lewontin, R. C. (1974). The genetic basis of evolutionary change. Columbia University Press, New York

    Google Scholar 

  • Losee, E. (1979). Relationship between larval and spat growth rates in the oyster (Crassostrea virginica). Aquaculture, Amsterdam 16: 123–126

    Google Scholar 

  • Lucas, M. I., Walker, G., Holland, D. L., Crisp, D. J. (1979). An energy budget for the free-swimming and metamorphosing larvae of Balanus balanoides (Crustacea: Cirripedia). Mar. Biol. 55: 221–229

    Google Scholar 

  • Miller, S. E., Hadfield, M. G. (1986). Ontogeny of phototaxis and metamorphic competence in larvae of the nudibranch Phestilla sibogae Bergh (Gastropoda: Opisthobranchia). J. exp. mar. Biol. Ecol. 97: 95–112

    Google Scholar 

  • Miller, S. E., Hadfield, M. G. (1990). Developmental arrest during larval life and life-span extension in a marine mollusc. Science, N.Y. 248: 356–358

    Google Scholar 

  • Newkirk, G. F., Haley, L. E., Waugh, D. L., Doyle, R. (1977). Genetics of larvae and spat growth rate in the oyster Crassostrea virginica. Mar. Biol. 41: 49–52

    Google Scholar 

  • Obrebski, S. (1979). Larval colonizing strategies in marine benthic invertebrates. Mar. Ecol. Prog. Ser. 1: 293–300

    Google Scholar 

  • Palumbi, S. R., Wilson, A. C. (1990). Mitochondrial DNA diversity in the sea urchins Stronglyocentrotus purpuratus and S. droebachiensis. Evolution 44: 403–415

    Google Scholar 

  • Palmer, A. R., Strathmann, R. R. (1981). Scale of dispersal in varying environments and its implications for life histories of marine invertebrates. Oecologia 48: 308–318

    Google Scholar 

  • Pechenik, J. A. (1986). Field evidence for delayed metamorphosis of larval gastropods: Crepidula plana Say, C. fornicata (L.), and Bittium alternatum (Say). J. exp. mar. Biol. Ecol. 97: 313–319

    Google Scholar 

  • Pechenik, J. A., Eyster, L. S. (1989). Influence of delayed metamorphosis on the growth and metabolism of young Crepidula fornicata (Gastropoda) juveniles. Biol. Bull. mar. biol. Lab., Woods Hole 176: 14–24

    Google Scholar 

  • Pechenik, J. A., Lima, G. M. (1984). Relationship between growth, differentiation, and lenght of larval life for individually reared larvae of the marine gastropod, Crepidula fornicata. Biol. Bull. mar. biol. Lab., Woods Hole 166: 537–549

    Google Scholar 

  • Pechenik, J. A., Scheltema, R. S., Eyster, L. S. (1984). Growth stasis and limited shell calcification in larvae of Cymatium parthenopeum during trans-Atlantic transport. Science, N.Y. 224: 1091–1096

    Google Scholar 

  • Pennington, J. T., Chia, F. S. (1984). Morphological and behavioral defenses of trochophore larvae of Sabellaria cementarium (Polychaeta) against four planktonic predators. Biol. Bull. mar. biol. Lab., Woods Hole 167: 168–175

    Google Scholar 

  • Pennington, J. T., Rumrill, S. S., Chia, F. S. (1986). Stage specific predation upon embryos and larvae of the Pacific sand dollar, Dendraster excentricus, by eleven species of common zooplankton predators. Bull. mar. Sci. 39: 234–240

    Google Scholar 

  • Richmond, R. H. (1987). Energetics, competency, and long-distance dispersal of planula larvae of the coral Pocillopora damicornis. Mar. Biol. 93: 527–533

    Google Scholar 

  • SAS Institute Inc. (1985). SAS procedures guide for personal computers. Version 6 edn. SAS Institute, Inc., Carey, North Carolina

    Google Scholar 

  • Scheltema, R. S. (1975). Relationship of larval dispersal, gene-flow and natural selection to geographic variation of benthic invertebrates in estuaries and along coastal regions. Estuar. Res. 1: 372–391

    Google Scholar 

  • Scheltema, R. S. (1986). On dispersal and planktonic larvae of benthic invertebrates: an eclectic overview and summary of problems. Bull. mar. Sci. 39: 290–322

    Google Scholar 

  • Sebens, K. P. (1983). The larval and juvenile ecology of the temperate octocoral Alcyonium siderium Verrill. I. Substrate selection by benthic larvae. J. exp. mar. Biol. Ecol. 71: 73–89

    Google Scholar 

  • Shanks, A. L. (1985). Behavioral basis of internal-wave-induced shoreward transport of megalopae of the crab Pachygrapsus crassipes. Mar. Ecol. Prog. Ser. 24: 289–295

    Google Scholar 

  • Strathmann, R. R. (1974). The spread of sibling larvae of sedentary marine invertebrates. Am. Nat. 108: 29–44

    Google Scholar 

  • Strathmann, R. R., Branscomb, E. S. (1979). Adequacy of cues to favorable sites used by settling larvae of two intertidal barnacles. In: Stancyk, S. E. (ed.) Reproductive ecology of marine invertebrates. University of South Carolina press, Columbia, p. 77–89

    Google Scholar 

  • Strathmann, R. R., Branscomb, E. S., Vedder, K. (1981). Fatal errors in set as a cost of dispersal and the influence of intertidal flora on set of barnacles. Oecologia 48: 13–18

    Google Scholar 

  • Sulkin, S. D. (1984). Behavioral basis of depth regulation in the larvae of brachyuran crabs. Mar. Ecol. Prog. Ser. 15: 181–205

    Google Scholar 

  • Thompson, T. E. (1958). The natural history, embryology, larval biology and post-larval development of Adalaria proxima (Alder and Hancock) (Gastropoda Opisthobranchia). Phil. Trans. R. Soc. (Ser. B) 242: 1–58

    Google Scholar 

  • Thorson, G. (1950). Reproductive and larval ecology of marine bottom invertebrates. Biol. Rev. 25: 1–45

    Google Scholar 

  • Thorson, G. (1961). Length of pelagic larval life in marine bottom invertebrates as related to larval transport by ocean currents. In: Sears, M. (ed.) Oceanography. American Association for the Advancement of Science, Washington, p. 455–474

    Google Scholar 

  • Weindruch, R., Walford, R. L. (1988). The retardation of aging and disease by dietary restriction. C. A. Thomas, Springfield, Illinois

    Google Scholar 

  • Wilson, D. P. (1968). Some aspects of the development of eggs and larvae of Sabellaria alveolata (L.) J. mar. biol. Ass. U.K. 48: 367–386

    Google Scholar 

  • Woollacott, R. M., Pechenik, J. A., Imbalzano, K. M. (1989). Effects of duration of larval swimming period on early colony development in Bugula stolonifera (Bryozoa: Cheilostomata). Mar. Biol. 102: 57–63

    Google Scholar 

  • Young, C. M., Chia, F. S. (1982). Ontogeny of phototaxis during larval development of the sedentary polychaete, Serpula vermicularis (L.) Biol. Bull. mar. biol. Lab., Woods Hole 162: 457–468

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by M. G. Hadfield, Honolulu

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, S.E. Larval period and its influence on post-larval life history: comparison of lecithotrophy and facultative planktotrophy in the aeolid nudibranch Phestilla sibogae . Marine Biology 117, 635–645 (1993). https://doi.org/10.1007/BF00349776

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00349776

Keywords

Navigation