Skip to main content
Log in

Effects of temperature, seawater osmolality and season on oxygen consumption and osmoregulation of the amphipod Gammarus oceanicus

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Seasonal variations of oxygen consumption rate, haemolymph osmolality and the concentrations of the inorganic ions potassium and sodium in the haemolymph were measured in the littoral amphipod Gammarus oceanicus collected from the Trondheimsfjorden, Norway in 1987. For each season comparisons were made of amphipods acclimated for 1 wk to 0.5, 4.5, 10.0, 15.0 and 20.0°C, in combination with seawater osmolalities of 100, 500 and 1200 mOsm and to the seawater osmolality corresponding to that of the collecting site. The oxygen consumption rate showed a temperature insensitivity when the amphipods were acclimated to low temperatures in winter and high temperatures in summer. Significant differences were found in oxygen consumption between individuals acclimated to various medium osmolalities, possibly indicating higher energy requirements for osmotic and ionic regulation at low seawater osmolalities. Oxygen consumption rate was significantly higher in summer than in other seasons. Haemolymph osmolality and the concentration of the inorganic ions sodium and potassium were not influenced by temperature or season. Determination of haemolymph osmolalities and concentrations of inorganic ions revealed that G. oceanicus is a strong hyper-osmotic and hyper-ionic regulator in dilute seawater. The concentration of potassium in the haemolymph is less influenced by seawater osmolality than haemolymph osmolality and the haemolymph concentration of sodium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aarset, A. V., Aunaas, T. (1990). Effects of osmotic stress on oxygen consumption and ammonia excretion of the Arctic sympagic amphipod Gammarus wilkitzkii. Mar. Ecol. Prog. Ser. 58: 217–224

    Google Scholar 

  • Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., Watson, J. D. (1989). Molecular biology of the cell, 2nd edn. Garland Publishing, Inc., New York

    Google Scholar 

  • Beadle, L. C., Cragg, J. B. (1940). Studies on adaption to salinity in Gammarus spp. I. Regulation of blood and tissues and the problem of adaption to fresh water. J. exp. Biol. 17: 4–11

    Google Scholar 

  • Brodie, D. A., Halcrow, K. (1978). Haemolymph regulation to hyposaline and hypersaline conditions in Gammarus oceanicus. Experientia 34: 1297–1298

    Google Scholar 

  • Bulnheim, H. P. (1972). Vergleichende Untersuchungen zur Atmungsphysiologie euryhaliner Gammariden unter besonderer Berücksichtigung der Salzgehaltanpassung. Helgoländer wiss. Meeresunters. 23: 485–534

    Google Scholar 

  • Bulnheim, H. P. (1979). Comparative studies on the physiological ecology of five euryhaline Gammarus species. Oecologia 44: 80–86

    Google Scholar 

  • Dalla Via, G. J. (1987). Effects of salinity and temperature on oxygen consumption in a freshwater population of Palaemonetes antennarius (Crustacea, Decapoda). Comp. Biochem. Physiol. 88: 299–305

    Google Scholar 

  • Dorgelo, J. (1973). Comparative ecophysiology of gammarids (Crustacea, Amphipoda) from marine, brackish and freshwater habitats, exposed to the influence of salinity-temperature combinations. III. Oxygen uptake. Neth. J. Sea Res. 7: 253–266

    Google Scholar 

  • Dorgelo, J. (1977). Comparative ecophysiology of gammarids (Crustacea, Amphipoda) from marine, brackish and freshwater habitats, exposed to the influence of salinity-temperature combinations. IV. Blood sodium regulation. Neth. J. Sea Res. 11: 184–199

    Google Scholar 

  • Engelmann, M. D. (1963). A constant pressure respirometer for small arthropods. Ent. News 74: 181–187

    Google Scholar 

  • Florey, E. (1966). Bioelectricity. In: Florey, E. (ed.) General and comparative animal physiology. W. B. Saunders, London, p. 375–417

    Google Scholar 

  • Hagerman, L. (1970). The oxygen consumption of Crangon vulgaris (Fabricius) (Crustacea, Natantia) in relation to salinity. Ophelia 7: 283–292

    Google Scholar 

  • Halcrow, K., Boyd, C. M. (1967). The oxygen consumption and swimming activity of the amphipod Gammarus oceanicus at different temperatures. Comp. Biochem. Physiol. 23: 233–242

    Google Scholar 

  • Kinne, O. (1952). Zur Biologie und Physiologie von Gammarus duebeni Lillj. V. Untersuchungen über Blutkonzentration, Herzfrequenz und Atmung. Kieler Meeresforsch. 9: 134–150

    Google Scholar 

  • Kinne, O. (1971). Salinity: invertebrates. In: Kinne, O. (ed.) Marine ecology. 1. John Wiley, London, p. 821–995

    Google Scholar 

  • Kirschner, L. B. (1979). Control of the extracellular fluid osmolarity, control mechanisms in crustaceans and fishes. In: Gilles, R. (ed.) Mechanisms of osmoregulation in animals. Wiley, New York, p. 157–222

    Google Scholar 

  • Leineweber, P. (1985). The life cycles of four amphipod species in the Kattegat. Holarct. Ecol., Copenhagen 8: 165–174

    Google Scholar 

  • Lockwood, A. P. M. (1961). The urine of Gammarus duebeni and G. pulex. J. exp. Biol. 38: 647–658

    Google Scholar 

  • Lockwood, A. P. M., Andrews, W. R. M. (1969). Active transport and sodium fluxes at moult in the amphipod Gammarus duebeni. J. exp. Biol. 51: 591–605

    Google Scholar 

  • Lockwood, A. P. M., Inman, C. B. E. (1973). Changes in the apparent permeability to water at moult in the amphipod Gammarus duebeni and the isopod Idotea linearis. Comp. Biochem. Physiol. 44: 943–952

    Google Scholar 

  • McLusky, D. (1969). The oxygen consumption of Corophium volutator in relation to salinity. Comp. Biochem. Physiol. 29: 743–753

    Google Scholar 

  • Newell, R. C. (1979). Metabolic energy expenditure. In: Newell, R. C. (ed.) The biology of intertidal animals. Logos Press, London, p. 505–673

    Google Scholar 

  • Percy, J. A. (1975). Ecological physiology of Arctic marine invertebrates. Temperature and salinity relationships of the amphipod Onisimus affinis H. J. Hansen. J. exp. mar. Biol. Ecol. 20: 99–117

    Google Scholar 

  • Potts, W. T. W. (1954). The energetics of osmotic regulation in brackish fresh-water animals. J. exp. Biol. 31: 618–630

    Google Scholar 

  • Prosser, C. L. (1991). Definition of comparative physiology: Theory of adaption. In: Prosser, C. I. (ed.) Comparative and metabolic animal physiology, 4th edn. Wiley, New York, p. 1–11

    Google Scholar 

  • Prosser, C. L., Heath, J. E. (1991). Temperature. In: Prosser, C. L. (ed.) Comparative and metabolic animal physiology 4th edn. Wiley, New York, p. 109–165

    Google Scholar 

  • Robertson, J. D. (1960). Ionic regulation in the crab Carcinus maenas (L.) in relation to the moulting cycle. Comp. Biochem. Physiol. 1: 183–212

    Google Scholar 

  • Segerstråle, S. G. (1947). New observations on the distribution and morphology of Gammarus zaddachi Sexton, with notes on related species. J. mar. biol. Ass. U.K. 27: 219–244

    Google Scholar 

  • Segerstråle, S. G. (1959). Synopsis of data on the Crustaceans Gammarus locusta, Gammarus oceanicus, Ponteporeia affinis and Corophium volutator (Amphipoda, Gammaridea). Soc. Sci. Fenn., Comment. Biol. 20: 1–23

    Google Scholar 

  • Skadsheim, A. (1984). Life cycles of Gammarus oceanicus and G. salinus (Amphipoda) in the Oslofjord, Norway. Holarct. Ecol., Copenhagen 7: 262–270

    Google Scholar 

  • Skadsheim, A. (1989). Regional variation in amphipod life history: effects of temperature and salinity on breeding. J. exp. mar. Biol. Ecol. 127: 25–42

    Google Scholar 

  • Soumalainen, P. (1958). Der Sauerstoffverbrauch einiger finnischer Gammarus-Arten. Verh. int. Verein. theor. angew. Limnol. 13: 873–878

    Google Scholar 

  • Steele, D. H., Steele, V. J. (1973). The biology of Gammarus (Crustacea, Amphipoda) in the northwestern Atlantic. VII. The duration of embryonic development in five species at various temperatures. Can. J. Zool. 51: 995–999

    Google Scholar 

  • Steele, V. J., Steele, D. H. (1972). The biology of Gammarus (Crustacea, Amphipoda) in the northwestern Atlantic. V. Gammarus oceanicus Segerstråle. Can. J. Zool. 50: 801–813

    Google Scholar 

  • Styczynska-Jurewicz, E. (1970). Bioenergetics of osmoregulation in aquatic animals. Polskie Archwn. Hybrobiol. 17: 295–302

    Google Scholar 

  • Sutcliffe, D. W. (1968). Sodium regulation and adaption to fresh water in gammarid crustaceans. J. exp. Biol. 48: 359–380

    Google Scholar 

  • Tedengren, M., Arner, M., Kautsky, N. (1988). Ecophysiology and stress response of marine and brackish water Gammarus species (Crustacea, Amphipoda) to changes in salinity and exposure to cadmium and diesel-oil. Mar. Ecol. Prog. Ser. 47: 107–116

    Google Scholar 

  • Vernberg, F. J. (1983). Respiratory adaptions. In: Bliss, D. E. (ed.) The biology of crustacea, Vol. 8. Environmental adaptations. Academic Press, New York, p. 1–42

    Google Scholar 

  • Werntz, H. G. (1963). Osmotic regulation in marine and freshwater gammarids (Amphipoda). Biol. Bull. mar. biol. Lab., Woods Hole 124: 225–239

    Google Scholar 

  • Zachariassen, K. E., Baust, J. G., Lee, R. E. (1982). A method for quantitative determination of ice nucleating agents in insect haemolymph. Cryobiol. 19: 180–184

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by T. M. Fenchel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Einarson, S. Effects of temperature, seawater osmolality and season on oxygen consumption and osmoregulation of the amphipod Gammarus oceanicus . Marine Biology 117, 599–606 (1993). https://doi.org/10.1007/BF00349771

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00349771

Keywords

Navigation