Marine Biology

, Volume 112, Issue 1, pp 147–152 | Cite as

Effect of algal bloom deposition on sediment respiration and fluxes

  • L. S. Hansen
  • T. H. Blackburn


Using sediment cores collected in November 1989 from Aarhus Bight, Denmark, the fluxes of O2, ΣCO2 (total CO2), NH 4 + , NO 3 +NO 2 and DON (dissolved organic nitrogen) across the sediment-water interface were followed for 20 d in an experimental continous flow system. On day 7, phytoplankton was added to the sediment surface, to see the result of simulated algal bloom sedimentation. Benthic O2 consumption and ΣCO2 efflux, 38 to 41 mmol O2 m-2 d-1 and 25 to 30 mmol CO2 m-2 d-1, respectively, immediately increased by 39% and 100% after the algal addition, but gradually declined to the orginal level. Fluxes of NH 4 + (1.0 to 1.2 mmol m-2 d-1) and DON (0.3 to 0.9 mmol m-2 d-1) increased due to the organic substrate addition. NH 4 + and NO 3 flux changed direction, becoming an efflux and influx, respectively, for a few days and a large amount of DON (max. rate 4.0 mmol m-2 d-1) was immediately produced either by bacterial hydrolytic activity or from autolysis of the algae. DON was the most significant nitrogen component in pore water and in terms of N-flux from sediment. A temporary stimulation of anaerobic respiration processes (sulfate reduction and denitrification) and a decrease in nitrification were indicated. After the effect of the organic addition had declined, the fluxes gradually reverted to the original rates. The “halflife” of the added algal material, of which 20 to 30% was very labile, was estimated to be 2 to 3 wk.


Phytoplankton Respiration Denitrification Sulfate Reduction Algal Bloom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Aarhus County Environmental Report (1990). Forureningskilder og resumé af undersøgelser, Århus bugt og Kalø vig 1989, Aarhus Amtskommune, Aarhus, DenmarkGoogle Scholar
  2. Aller, R. C. (1988). Benthic fauna and biogeochemical processes in marine sediments: the role of burrow structures. In: Blackburn, T. H., Sørensen, S. (eds.) Nitrogen cycling in coastal marine sediments. Wiley, Chichester, p. 300–337Google Scholar
  3. Andersen, F.Ø., Hargrave, B. T. (1984). Effect of Spartina detritus enrichment on aerobic/anacrobic benthic metabolism in an intertidal sediment. Mar. Ecol. Prog. Ser. 16: 161–171Google Scholar
  4. Armstrong, F. A. J., Stearns, C. R., Strickland, J. D. H. (1967). The measurements of upwelling and subsequent biological processes by means of the Technicon Autoanalyser and associated equipment. Deep-Sea Res. 14: 381–389Google Scholar
  5. Binnerup, S. J., Jensen, K. (1990). Kvælstof og iltomsætning i Norsminde fjord sediment. M. Sc. thesis, Aarhus University, DenmarkGoogle Scholar
  6. Blackburn, T. H. (1986). Microbial processes of N-and C-cycles in marine sediments. In: Megusar, F., Ganter, M. (eds.) Perspectives in microbial ecology. Slovene Society for Microbiology, Ljubljana, p. 218–224Google Scholar
  7. Blackburn, T. H. (1990). Denitrification model for marine sediments. In: Sørensen, J., Revsbech, N. P. (eds.) Denitrification in soil and sediment. Pergamon Press, LondonGoogle Scholar
  8. Blackburn, T. H., Lund, B. Aa., Krom, M. D. (1988). C-and N-mineralization in the sediments of earthen marine fishponds. Mar. Ecol. Prog. Ser. 44: 221–227Google Scholar
  9. Christensen, J. P., Gilbert, T. R., Clifford, C. H. (1983). The possible importance of primary amino nitrogen regeneration by coastal marine sediments in Buzzard Bay, Massachusetts. Int. Revue ges. Hydrobiol. 68: 501–512Google Scholar
  10. Enoksson, V. (1987). Nitrogen flux between sediment and water and its regulatory factors in coastal areas. Ph. D. dissertation, University of Göteborg, SwedenGoogle Scholar
  11. Fallesen, G. (1988). Iltsvind, fiskedød og masseforekomst af alger i Århus Amts marine områder. Teknisk rapport. Århus Amtskommune, Miljøkontoret, DenmarkGoogle Scholar
  12. Fenchel, T., Blackburn, T. H. (1979). Bacteria and mineral cycling. Academic Press, LondonGoogle Scholar
  13. Garber, J. H. (1984). 15N tracer study of the short term fate of particulate organic nitrogen at the surface of coastal marine sediments. Mar. Ecol. Prog. Ser. 16: 89–104Google Scholar
  14. Graf, G., Schulz, R., Peinert, R., Meyer-Reil, L. A. (1983). Benthic response of sedimentation event during autumn to spring at a shallow-water station in the Western Kiel Bight. Mar. Biol. 77: 235–246Google Scholar
  15. Gundersen, J. K., Jørgensen, B. B. (1990). Microstructure of diffusive boundary layers and the oxygen uptake of the sea floor. Nature, Lond. 345: 604–607Google Scholar
  16. Hall, P. O. J., Anderson, L. G., Rutgers van der Loeff, M. M., Sundby, B., Westerlund, S. F. G. (1989). Oxygen uptake kinetics in the benthic boundary layer. Limnol. Oceanogr. 34: 734–746Google Scholar
  17. Hansen, L. S., Blackburn, T. H. (1991). Aerobic and anaerobic mineralization of organic material in marine sediment microcosms. Mar. Ecol. Prog. Ser. 75: 283–291Google Scholar
  18. Hargrave, B. T., Phillips, G. A. (1981). Annual in situ carbon dioxide and oxygen flux across a subtidal sediment. Estuar. cstl Shelf Sci. 12: 725–737Google Scholar
  19. Henriksen, K., Hansen, J. I., Blackburn, T. H. (1981). Rates of nitrification, distribution of nitrifying bacteria, and nitrate fluxes in different types of sediments from Danish waters. Mar. Biol. 61: 299–304Google Scholar
  20. Jensen, M. H., Andersen, T. K., Sørensen, J. (1988). Denitrification in coastal bay sediment: regional and seasonal variation in Aarhus Bight, Denmark. Mar. Ecol. Prog. Ser. 48: 155–162Google Scholar
  21. Jensen, M. H., Lomstein, E., Sørensen, J. (1990). Benthic NH4+ and NO3 flux following sedimentation of a spring phytoplankton bloom in Aarhus Bight, Denmark. Mar. Ecol. Prog. Ser. 61: 87–96Google Scholar
  22. Jørgensen, B. B. (1977). The sulfur cycle of a coastal marine sediment (Limfjorden, Denmark). Limnol. Oceanogr. 22: 814–831Google Scholar
  23. Jørgensen, B. B. (1983). Processes at the sediment-water interface. In: Bolin, B., Cook, R. B. (eds.) The major biochemical cycles and their interactions. Wiley, Chichester, p. 477–509Google Scholar
  24. Kanneworff, E., Nicolaisen, W. (1973). The “Haps”; a frame supported bottom corer. Ophelia 10: 119–128Google Scholar
  25. Kelly, J. R., Nixon, S. W. (1984). Experimental studies of the effect of organic deposition of the metabolism of a coastal marine bottom community. Mar. Ecol. Prog. Ser. 17: 157–169Google Scholar
  26. Kester, D. R., Duedall, I., Connors, D. N., Pytkowics, R. N. (1967). Preparation of artificial seawater. Limnol. Oceanogr. 12: 176–178Google Scholar
  27. Koroleff, F. (1976). Total and organic nitrogen. In: Grasshoff, K. (ed.) Methods of seawater analysis. Verlag Chemie, New York, p. 167–181Google Scholar
  28. Kristensen, E., Blackburn, T. H. (1987). The fate of organic carbon and nitrogen in experimental marine sediment system: influence of bioturbation and anoxia. J. mar. Res. 45: 231–257Google Scholar
  29. Lancelot, C., Billen, C. (1985). Carbon-nitrogen relationship in nutrient metabolism of coastal marine ecosystem. Adv. aquat. Microbiol. 3: 263–321Google Scholar
  30. Lomstein, E., Jensen, M. H., Sørensen, J. (1990). Particulate NH4+ and NO3 pools associated with phytoplankton sedimentation in a marine sediment (Aarhus Bight, Denmark). Mar. Ecol. Prog. Ser. 61: 97–105Google Scholar
  31. Moeslund, L. (1989). Svovlomsætning i marint sediment: Årstidsvariation af reducerede svovlpuljer og sulfatreduktionsrater i Aarhus Bugt. M.Sc. thesis, Aarhus University, DenmarkGoogle Scholar
  32. Nielsen, L. P., Christensen, P. B., Revsbech, N. P., Sørensen, J. (1990). Denitrification and oxygen respiration in biofilms studies with microsensor for nitrous oxide and oxygen. Microb. Ecol. 19: 63–72Google Scholar
  33. Nishio, T., Koike, I., Hattori, A. (1983). Estimates of denitrification and nitrification in coastal and estuarine sediment. Appl. envirl Microbiol. 45: 444–450Google Scholar
  34. Rasmussen, H. (1989). Sedimenters iltoptagelse: Med særlig henblik på årstidsvariation i Aarhus Bugt. M. Sc. thesis, Aarhus University, DenmarkGoogle Scholar
  35. Solorzanó, L. (1969). Determination of ammonia in natural waters by the phenyl-hypoclorite method. Limnol. Oceanogr. 14: 799–801Google Scholar
  36. Strickland, J.D., Parson, T. R. (1972). A practical handbook of seawater analysis, 2nd edn. Bull. Fish. Red. Bd Can. 167Google Scholar
  37. Sørensen, J., Rasmussen, L. K., Koike, I (1987). Micromolar sulfide concentrations alleviate acetylene blockage on nitrous oxide reduction by denitrifying pseudomonas fluorescens. Can. J. Microbiol. 33: 1001–1005Google Scholar
  38. Sørensen, J., Tiedje, J. M., Firestone, R. B. (1980). Inhibition by sulfide of nitric oxide reduction by denitrifying pseudomonas fluorescens. Appl. envirl microbiol. 39: 105–108Google Scholar
  39. Talling, J. F. (1973). The application of some electrochemical methods to the measurements of photosynthesis and respirations in fresh waters. Freshwat. Biol. 3: 335–363Google Scholar
  40. Walsh, T. W. (1989). Total dissolved nitrogen in seawater: a new-high-temperature combustion method and a comparison with photo-oxidation. Mar. Chem. 26: 295–311Google Scholar
  41. Westrich, J. T., Berner, R. A. (1984). The role of sedimentary organic matter in bacterial sulfate reduction: the G model tested. Limnol. Oceanogr. 29: 236–249Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • L. S. Hansen
    • 1
  • T. H. Blackburn
    • 1
  1. 1.Department of Ecology and GeneticsUniversity of AarhusAarhus CDenmark

Personalised recommendations