Advertisement

Marine Biology

, Volume 112, Issue 1, pp 81–89 | Cite as

Photoperiodic regulation of parturition in the self-fertilizing viviparous polychaete Neanthes limnicola from central California

  • P. P. Fong
  • J. S. Pearse
Article

Abstract

Seasonally-changing photoperiod controls the timing of parturition in the viviparous, self-fertilizing polychaete Neanthes limnicola (Johnson, 1901) from Watsonville Slough, a central California estuary. During 1987 to 1989, worms in the field gave birth mainly in the spring. Those born in late February from field-collected parents and maintained in the laboratory under in-phase photoperiodic conditions reproduced in 12 to 13 mo, under spring light-regimes. When maintained under light conditions 6 mo out of phase,they required only about 6 to 8 mo to reproduce, giving birth in the fall, but under spring light-regimes. Worms born in the laboratory in fall and then maintained in phase reproduced in the ambient spring, at 6 to 8 mo of age; those maintained out of phase took 12 to 13 mo, giving birth the following fall under spring light-regimes. Photoperiod treatments had no consistent effect on the number of young produced, and age and fecundity were only weakly correlated. Highest fecundities were in salinities of 15 to 20‰,with lower fecundities at higher salinities. Worms maintained in fullstrength sea water(33‰ S) showed abnormal development and produced very few or no young. Salinity did not affect timing of parturition. Temperature differences of 3 to 7 C° between treatments had no effect on timing of parturition or number of young produced, and marginal effects on life span. These results indicate that photoperiod regulates the timing of reproduction in N. limnicola in central California, while salinity mainly influences fecundity.

Keywords

Temperature Difference Life Span Light Condition High Salinity Marginal Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature acid

  1. Bass, N. R., Brafield, A. E. (1972). The life-cycle of the polychaete Nereis virens. J. mar. biol. Ass. U.K. 52: 701–726Google Scholar
  2. Bay-Schmith, E., Pearse, J. S. (1987). Effect of fixed daylength on the photoperiodic regulation of gametogenesis in the sea urchin Strongylocentrotus purpuratus. Int. J. Invert. Reprod. Dev. 11: 287–294Google Scholar
  3. Bell, G. (1980). The costs of reproduction and their consequences. Am. Nat. 116: 45–76Google Scholar
  4. Chu, J-W., Levin, L. (1989). Photoperiod and temperature regulation of growth and reproduction in Streblospio benedicti (Polychaeta: Spionidae). Int. J. Invert. Reprod. Dev. 15: 131–142Google Scholar
  5. Clark, S. (1988). A two phase photoperiodic response controlling the annual gametogenic cycle in Harmothoe imbricata (L) (Polychaeta: Polynoidae) Int. J. Invert. Reprod. Dev. 14: 245–266Google Scholar
  6. Custer, D. M. (1986). The tidepool shrimp Heptacarpus pictus: population dynamics at Pigeon Point, California and the effects of photoperiod on growth and reproduction. M. Sc. thesis. University of California, Santa Cruz, USAGoogle Scholar
  7. Fang, Y., Liang, P., Hong, G. (1989). The effects of photoperiod on the gametogenesis and gonadal growth of the amphioxus. Acta zool. sin. 35: 438–439Google Scholar
  8. Fong, P. P. (1991). The effect of salinity, temperature, and photoperiod on epitokal metamorphosis in Neanthes succinea (Frey and Leuckart) from San Francisco Bay. J. exp. mar. Biol. Ecol. 149: 177–190Google Scholar
  9. Garwood, P. R., Olive, P. J. W.(1981). The influence of environmental factors on the growth of oocytes in Nereis diversicolor (Annelida: Polychaeta). Bull. Soc. zool. Fr. 106: 399–402Google Scholar
  10. Garwood, P. R., Olive, P. J. W. (1982). The influence of photoperiod on oocyte growth and its role in the control of the reproductive cycle of the polychaete Harmothoe imbricata (L). Int. J. Invert. Reprod. 5: 161–165Google Scholar
  11. Giese, A. C. (1959). Reproductive cycles of some west coast invertebrates. In: Withrow, R. B. (ed.) Photoperiodism and related phenomena in plants and animals. Publs Am. Ass. Adymt Sci. 55: 625–638Google Scholar
  12. Giese, A. C., Pearse, J. S. (1974). Introduction: general principles. In: Giese, A. C. Pearse, J. S. (eds.) Reproduction of marine invertebrates. Vol. 1. Academic Press, New York, N.Y., p. 1–49Google Scholar
  13. Goerke, H. (1984). Temperature-dependence of swarming in North Sea Nereidae. Fortschr. Zool. 29: 39–43Google Scholar
  14. Hardege, J. D., Bartels-Hardege, H. D., Zeeck, E., Grimm, F. T. (1990). Induction of swarming of Nereis succinea. Mar. Biol. 104: 291–295Google Scholar
  15. Hauenschild, C. (1955). Photoperiodizität als Ursache des von der Mondphase abhängigen Metamorphose-Rhythmus bei dem Polychaeten Platynereis dumerilii. Z. Naturf. (Sekt. B) 10: 658–662Google Scholar
  16. Hauenschild, C. (1960). Lunar periodicity. Cold Spring Harb. Symp. quant. Biol. 25: 491–497Google Scholar
  17. Imajima, M. (1972). Review of the annelid worms of the family Nereidae of Japan, with descriptions of five new species or subspecies. Bull. natn.Sci. Mus., Tokyo 15: 37–153Google Scholar
  18. Izuka, A. (1908). On the breeding habit and development of Nereis japonica n. sp. Annotnes zool. jap. 6: 295–305Google Scholar
  19. Kinne, O. (1954). Über das Schwärmen und die Larvalentwicklung von Nereis succinea Leuckart (Polychaeta). Zool. Anz. 153: 114–126Google Scholar
  20. McClintock J. B., Watts, S. A. (1990). The effects of photoperiod on gametogenesis in the tropical sea urchin Eucidaris tribuloides (Lamarck) (Echinodermata: Echinoidea). J. exp. mar. Biol. Ecol. 139: 175–184Google Scholar
  21. Oglesby, L. C. (1968). Responses of an estuarine population of the polychaete Nereis limnicola to osmotic stress. Biol. Bull. mar. biol. Lab., Woods Hole 134: 118–138Google Scholar
  22. Olive, P. J. W. (1984). Environmental control of reproduction in Polychaeta. Fortschr. Zool. 29: 17–38Google Scholar
  23. Olive, P. J. W., Pillai, G. (1983). Reproductive biology of the polychaete Kefersteinia cirrata Keferstein (Hesionidae).II. The gametogenic cycle and evidence for photoperiodic control of oogenesis. Int. J. Invert. Reprod. 6: 307–315Google Scholar
  24. Orton, J. H. (1920). Sea-temperature, breeding and distribution in marine animals. J. mar. biol. Ass. U.K. 12: 339–366Google Scholar
  25. Pearse, J. S. (1990). Lunar reproductive rhythms in marine invertebrates: maximizing fertilization? In: Hoshi, M., Yamashita, O., (eds.) Advances in invertebrate reproduction. Vol. 5. Elsevier (Biomedical Division), Amsterdam, p. 311–316Google Scholar
  26. Pearse, J. S., Eernisse, D. J. (1982). Photoperiodic regulation of gametogenesis and gonadal growth in the sea star Pisaster ochraceus. Mar. Biol. 67: 121–125Google Scholar
  27. Pearse, J. S., Eernisse, D. J., Pearse, V. B.,Beauchamp, K. A. (1986a). Photoperiodic regulation of gametogenesis in sea stars, with evidence for an annual calendar independent of fixed daylength. Am. Zool. 26: 417–431Google Scholar
  28. Pearse, J. S., Pearse, V. B., Davis, K. K. (1986b). Photoperiodic regulation of gametogenesis and growth in the sea urchin Strongylocentrotus purpuratus.J. exp. Zool. 237: 107–118Google Scholar
  29. Pearse, J. S., Walker, C. W. (1986). Photoperiodic regulation of gametogenesis in a North Atlantic sea-star, Asterias vulgaris. Int. J. Invert. Reprod. Dev. 9: 71–78Google Scholar
  30. Schroeder, P. C., Hermans, C. O. (1975). Annelida: Polychaeta. In: Giese, A. C., Pearse, J. S. (eds.) Reproduction of marine invertebrates. Vol. 3. Academic Press, New York, N.Y., p. 1–213Google Scholar
  31. Smith, R. I. (1950). Embryonic development in the viviparous nereid polychaete, Neanthes lighti Hartman. J. Morph.87: 414–466Google Scholar
  32. Stearns, S. C. (1989). Trade-offs in life history evolution. Funct. Ecol. 3: 259–268Google Scholar
  33. Xu, R. A., Barker, M. F. (1990). Photoperiodic regulation of oogenesis in the starfish Sclerasterias mollis (Hutton 1872) (Echinodermata: Asteroidea). J. exp. mar. Biol. Ecol. 141: 159–168Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • P. P. Fong
    • 1
    • 2
  • J. S. Pearse
    • 1
    • 2
  1. 1.Biology Board of StudiesUniversity ofCaliforniaSanta CruzUSA
  2. 2.Institute of Marine SciencesUniversity ofCaliforniaSanta CruzUSA

Personalised recommendations