Marine Biology

, Volume 112, Issue 1, pp 67–74 | Cite as

Seasonal variations in condition, reproductive activity and biochemical composition of the flat oyster, Ostrea edulis, from San Cibran (Galicia, Spain)

  • C. Ruiz
  • D. Martinez
  • G. Mosquera
  • M. Abad
  • J. L. Sánchez


The influence of environmental parameters (temperature, salinity and available food) on the condition, reproductive activity and biochemical composition of a native population of Ostrea edulis L. in San Cibran (Galicia, Spain) was studied between September 1988 and December 1989. Histological preparations of gonads showed that gametogenesis started when temperature was at its lowest in winter. The water temperature in San Cibran never fell low enough to interrupt it. Gametogenesis proceeded slowly and spawning took place in May–June, although the predicted time of ripening was early March. Salinity in San Cibran was relatively stable throughout the year; it did not seem to have any influence on gametogenesis. Available food appeared to be a very important factor in controlling gonad growth, once gametogenesis was initiated. The major concentration of suspended organic particulate matter was present in the spring at the time of rapid gonadal maturation. Only one spawning period was observed. Larvae were released when the food in the water was high. Seasonal changes in the main biochemical components of this oyster were determined for a standard individual. Lipids and carbohydrates presented a similar time-course whereas proteins were constant. When food was abundant, energy reserves were built up. Spawning produced a decrease in biochemical constituent levels, and recovery coincided with the phytoplankton bloom. The stored reserves, mainly lipids, were used to overcome a state of energy imbalance in late autumn associated with low food availability. Results show this oyster to be an opportunist organism which concentrates its reproductive effort during a short period of favourable conditions and which is directly dependent on nutritive availability in the environment.


Phytoplankton Organic Particulate Matter Biochemical Composition Phytoplankton Bloom Reproductive Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Bartlett, B. R. (1979). Biochemical changes in the Pacific oyster Crassostrea gigas (Thunberg, 1795) during larval development and metamorphosis. Ph. D. thesis, University of OregonGoogle Scholar
  2. Bayne, B. L. (1976). Aspects of reproduction in bivalve molluscs. In: M. Wiley (ed.) Estuarine Process. Academic Press, New York, p. 432–448Google Scholar
  3. Beninger, P. G., Lucas, A. (1984). Seasonal variations in condition, reproductive activity and gross biochemical composition of two species of adult clam reared in a common habitat: Tapes decussatus L. (Jeffreys) and Tapes philiphinarum (Adams & Reeve). J exp. mar. Biol. Ecol. 79: 19–37Google Scholar
  4. Bensadoun, A., Weinstein, A. (1976). Assay of proteins in the presence of interfering materials. Analyt. Biochem. 70: 241–250Google Scholar
  5. Berg, C. J. (1969). Seasonal gonadal changes of adult oviparus oysters in Tomales Bay, California. Veliger 12: 27–36Google Scholar
  6. Braley, R. D. (1984). Mariculture potential of introduced oysters Saccrostrea cucullata-tuberculata and Crossostrea echinata and a histological study of reproduction of Crassostrea echinata. Aust. J. mar. Freshwat. Res. 35: 129–142Google Scholar
  7. Cole, H. A. (1942). Primary sex-phases in Ostrea edulis. Q. J. microsc. Sci. 83: 317–356Google Scholar
  8. Deslous-Paoli, J.-M., Heral, M., Berthome, J.-P., Razet, D., Garnier, J. (1982). Reproduction naturalle de Crassostrea gigas Thunberg dans le bassin de Marennes-Oleron en 1979 et 1981: Aspects biochimiques et énergétiques. Revue Trav. Inst. (scient. tech.) Pêch. marit. 45: 319–327Google Scholar
  9. Dinamani, P. (1987). Gametogenic patterns in populations of Pacific oyster, Crassostrea gigas, in Northland, New Zealand. Aquaculture, Amsterdam 64: 65–77Google Scholar
  10. Fernandez Castro, N., De Vido de Mattio, N. (1987). Biochemical composition, condition index, and energy value of Ostrea puelchana (D'Orbigny): relationships with the reproductive cycle. J. exp. mar. Biol. Ecol. 108: 113–126Google Scholar
  11. Folin, O., Malmros, H. (1929). An improved form of Folin's micro method for blood sugar determinations. J. biol. Chem. 83: 115–120Google Scholar
  12. gabbott, P. A. (1975). Storage cycles in marine bivalve molluscs: a hypothesis concerning the relationship between glycogen metabolism and gametogenesis. Proc. 9th Eur. mar. biol. Symp. p. 191–211 [Barnes, H. (ed.) Aberdeen University Press, Aberdeen]Google Scholar
  13. Gabbott, P. A. (1976). Energy metabolism. In: Bayne B. L. (ed.) Marine mussels: their ecology and physiology. Cambridge University Press, Cambridge, p. 121–206Google Scholar
  14. Gabbott, P. A. (1983). Developmental and scasonal metabolic activities in marine molluscs. In: Hochachka, P. W. (ed.) The Mollusca, Vol. 2. Environmental biochemistry and physiology. Academic Press, New York, p. 165–217Google Scholar
  15. Giese, A. C. (1969). A new approach to the biochemical composition of the mollusc body. Oceanogr. mar. Biol. A. Rev. 7: 175–229Google Scholar
  16. Giese, A. C., Hart, M. A., Smith, A. M., Cheung, M. A. (1967). Seasonal changes in body component indices and chemical composition in the Pisno clam Tivela stultorum. Comp. Biochem. Physiol. 22: 549–561Google Scholar
  17. Grant, A., Tyler, P. A. (1983). The analysis of data in studies of invertebrate reproduction. I. Introduction and statistical analysis of gonad indices and maturity indices. Int. J. Invert. Reprod. Dev. (Amsterdam) 6: 259–269Google Scholar
  18. Hess, H. H., Lees, M. B., Derr, J. E. (1978). A linear Lowry-Folin assay for both water-solubles and sodium dodecyl sulfate-solubilized proteins. Analyt. Biochem. 85: 295–300Google Scholar
  19. Hilbish, T. J., Zimmerman, K. M. (1988). Genetic and nutritional control of the gametogenic cycle in Mytilus edulis. Mar. Biol. 98: 233–228Google Scholar
  20. Holland, D. L., Gabbott, P. A. (1971) A micro-analytical scheme for the determination of protein, carbohydrate, lipid and RNA levels in marine invertebrate larvae. J. mar. biol. Ass. U.K. 51: 659–668Google Scholar
  21. Holland, D. L., Hannant, P. J. (1973) Addendum to a micro-analytical scheme for the biochemical analysis of marine invertebrate larvae. J. mar. biol. Ass. U. K. 53: 833–838Google Scholar
  22. Keppler, D., Decker, K. (1984). Glycogen. In: Bergmeyer, H. U. (ed.) Methods of enzymatic analysis, Vol 6, Metabolites 1: carbohydrates. Verlag Chemie, Weinheim, p. 11–18Google Scholar
  23. Korringa, P. (1976). Farming the flat oysters of the genus Ostrea. Elsevier, AmsterdamGoogle Scholar
  24. Leonard, V. K. (1969). Seasonal gonadal changes in two bivalve mollusks in Tomales Bay, California. Veliger 11: 49–55Google Scholar
  25. Loosanoff, V. L. (1962). Gametogenesis and spawning of the European oyster, Ostrea edulis in waters of Maine. Biol. Bull. mar. biol. Lab., Woods Hole 122: 86–94Google Scholar
  26. Lopez, M. D. G., Gomez, E. D. (1982). Reproductive cycles of the oysters Crassostrea echinata and Crassostrea lugubris in Calatagan Batangas Philippines. Kalikasan Philipp. J. Biol. 11: 57–73Google Scholar
  27. Lowry, O. H., Rosenbrough, N. J., Farr, A. L., Randall, R. J. (1951). Protein measurement with the Folin-Phenol reagent. J. Biol. Chem. 193: 265–275Google Scholar
  28. Lubet, P. (1976). Ecophysiologie de la reproduction chez les mollusques lamellibranches. Haliotis, Paris 7: 49–55Google Scholar
  29. Mann, R. (1979) Some biochemical and physiological aspects of growth and gametogenesis in Crassostrea gigas and Ostrea edulis grown at sustained elevated temperatures. J. mar. biol. Ass. U.K., 59: 95–100Google Scholar
  30. Marteil, L. (1960). Ecologie des huitres du Morbihan Ostrea edulis et Griphea angulata Lmk. Revue Trav. Inst. (scient. techn.) Pêch. marit. 24: 239–446Google Scholar
  31. Marsh, J. B., Weinstein, D. B. (1966). Simple charring method for determination of lipids. J. Lipid Res. 7: 574–576Google Scholar
  32. Montes, J., Mourelle, S. C., Melendez, M. I. (1990). Bonamiasis en poblaciones de ostra plana (Ostrea edulis L.) de diferentes origenes cultivada en Galicia. Actas III Congr. Nac. Acuicult. Santiago de Compostela, SpainGoogle Scholar
  33. Newell, R. I. E., Hilbish, T. J., Koehn, R. K., Newell, C. J. (1982) Temporal variation in the reproductive cycle of Mytilus edulis L. (Bivalvia, Mytilidae) from localities on the east coast of the United States. Biol. Bull. mar. biol. Lab., Woods Hole 162: 299–310Google Scholar
  34. Perdue, J. A., Erickson, G. (1984) A comparison of the gametogenic cycle between the Pacific oyster Crassostrea gigas and the Suminoe oyster Crassostrea rivularis in Washington State. Aquaculture, Amsterdam 37: 231–237Google Scholar
  35. Perusko, H. (1967). Study of the gonads of ostrea edulis L. in relation to its spawning cycle in the North Adriatic. Thalassia jugosl. 3: 5–10Google Scholar
  36. Saavedra, C., Zapata, C., Guerra, A., Alvarez, G. (1987). Genetic structure of populations of flat oyster (Ostrea edulis L.) from the NW of the Iberian Peninsula. Investigaciòn pesg. 51: 225–241Google Scholar
  37. Sastry, A. N. (1975). Physiology and ecology of reproduction in marine invertebrates. In: F. J.Vernberg (ed.) Physiological ecology of estuarine organisms. University of South Carolina Press, Columbia, SC, p. 279–299Google Scholar
  38. Siegel, S., Castellan, N. J. (1988). Nonparametric statistics for the behavioral sciences. McGraw-Hill Book Company New York p. 272–284, 311–312Google Scholar
  39. Soniat, T. M., Ray, S. M. (1985). Relationships between possible available food and the composition, condition and reproductive state of oysters from Galveston Bay, Texas. Contrib. mar. Sci. Univ. Tex. 28: 109–121Google Scholar
  40. Sphigel, M. (1989). Gametogenesis of the European flat oyster (Ostrea edulis) and the Pacific oyster (Crassostrea gigas) in warm water in Israel. Aquaculture, Amsterdam 80: 343–349Google Scholar
  41. Starr, H., Himmelmann, J. H., Therriault, J. C. (1990). Direct coupling of marine invertebrate spawning with phytoplankton blooms. Science, N. Y. 247: 1071–1074Google Scholar
  42. Stephan, D. (1980). The reproductive biology of the Indian oyster Crassostrea madrasensis (Preston). I gametogenic pattern and salinity. Aquaculture, Amsterdam 21: 139–146Google Scholar
  43. Strickland, J. D. H., Parsons, T. R. (1968). A practical handbook of sea water analysis, rev. edition. Bull. Fish. Res. Bd Can. 167: p. 1–310Google Scholar
  44. Velez, A., Epifanio, C. E. (1981). Effects of temperature and ration on gametogenesis and growth in the tropical mussel Perna perna (L.) Aquaculture, Amsterdam 22: 21–26Google Scholar
  45. Walne, P. R. (1976). Experiments on the culture in the sea of the butterfish Venerupis decussata L. Aquaculture, Amsterdam 8: 371–381Google Scholar
  46. Walne, P. R., Mann, R. (1975). Growth and biochemical composition of Ostrea edulis and Crassostrea gigas. Proc. 9th Europ. mar. biol. Symp. p. 587–607 [Barnes, H. (ed.) Aberdeen University Press, Aberdeen]Google Scholar
  47. Whyte, J. N. C., Englar, J. R., Carswell, B. L. (1990). Biochemical composition and energy reserves in Crassostrea gigas exposed to different levels of nutrition. Aquaculture, Amsterdam 90: 157–172Google Scholar
  48. Wilson, J. H., Simmons, J. (1985). Gametogenesis and breeding of Ostrea edulis on the West Coast of Ireland. Aquaculture, Amsterdam 46: 307–321Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • C. Ruiz
    • 1
  • D. Martinez
    • 2
  • G. Mosquera
    • 3
  • M. Abad
    • 1
  • J. L. Sánchez
    • 1
  1. 1.Departamento de Bioquímica y Biologia Molecular, Facultad de FarmaciaUniversidad de Santiago de CompostelaSantiago de CompostelaSpain
  2. 2.Centro de Cultivos MariñosRibadeoSpain
  3. 3.Conselleria de PescaDelegación de La CoruñaSpain

Personalised recommendations