Marine Biology

, Volume 112, Issue 1, pp 49–56 | Cite as

Spatial distribution and feeding rates of Centropages typicus in relation to frontal hydrographic structures in the Catalan Sea (Western Mediterranean)

  • E. Saiz
  • V. Rodriguez
  • M. Alcaraz


The relationships between hydrographic structures and some biological processes (distribution of biomass of phyto- and zooplankton, and feeding activity of Centropages typicus) were studied in May 1989 across a transect in the Western Mediterranean characterized by a density front. Feeding was estimated by means of pigment contents of guts and gut-clearance rates. The distribution patterns of the producers and consumers associated with the hydrodynamic structures agreed with previous descriptions for other similar fronts in the Western Mediterranean. Ingestion rates of C. typicus and grazing pressure were highly variable across the transect, and paralleled similarly variable gut-clearance rates. Although ingestion reflected phytoplankton (chlorophyll) abundance, the differences in food concentration seemed too low in comparison to the variability observed. Some phytoplankton properties such as cell size or chemical composition, which can be modified by hydrographic characteristics, or microscale turbulence, could be responsible for the considerable differences in feeding activity of this species in the various areas of the frontal system investigated.


Biomass Chlorophyll Phytoplankton Distribution Pattern Cell Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Alcaraz, M. (1985). Vertical distribution of zooplankton biomass during summer stratification in the Western Mediterranean. Proc. 19th Eur. mar. Biol. Symp. 135–143 [Gibbs P. E. (ed.) Cambridge University Press, Cambridge]Google Scholar
  2. Alcaraz, M. (1988). Summer zooplankton metabolism and its relation to primary production in the Western Mediterranean. Oceanol. Acta 9 (Spec. Issue): 185–191Google Scholar
  3. Alcaraz, M., Packard, T. T. (1989). Zooplankton ETS activity and respiration in the Catalan Sea (Western Mediterranean). Scientia mar. 53: 247–250Google Scholar
  4. Alcaraz, M., Saiz E. (1991). External energy and plankton: new insights on the role of small scale turbulence on zooplankton ecology. Oecologia aquat. (in press)Google Scholar
  5. Alcaraz, M., Saiz, E., Marrasé C., Vaqué D. (1988). Effects of turbulence on the development of phytoplankton biomass and copepod populations in marine microcosms. Mar. Ecol. Prog. Ser. 49: 117–125Google Scholar
  6. Alldredge, A. L., Hamner, W. M. (1980). Recurring aggregation of zooplankton by a tidal current. Estuar. cstl mar. Sci. 10: 31–37Google Scholar
  7. Baars, M. A., Oosterhuis, S. S.: (1984). Diurnal feeding rhythms in North Sea copepods measured by gut fluorescence, digestive enzyme activity and grazing on labelled food. Neth. J. Sea Res. 18: 97–119Google Scholar
  8. Banse, K. (1977). Determining the carbon-to-chlorophyll ratio of natural phytoplankton. Mar. Biol. 41: 199–212Google Scholar
  9. Bautista, B., Rodriguez, V., Jimenez, F. (1988). Short-term feeding rates of Acartia grani in natural conditions: diurnal variation. J. Plankton Res. 10: 907–920Google Scholar
  10. Boucher, M. (1984). Localization of zooplankton populations in the Ligurian marine front: role of ontogenic migration. Deep-Sea Res. 29: 953–965Google Scholar
  11. Boucher, M., Ibanez, F., Prieur, L. (1987). Daily and seasonal variations in the spatial distribution of zooplankton populations in relation to the physical structure in the Ligurian Sea Front. J. mar. Res. 45: 133–173Google Scholar
  12. Boyd, C. M., Smith, S. L., Cowles, T. J. (1980). Grazing patterns of copepods in the upwelling system off Peru. Limnol. Oceanogr. 25: 583–596Google Scholar
  13. Castellón, A., Font, J., Garcia-Ladona, E. (1991). The Liguro-Provençal-Catalan current (NW Mediterranean) observed by Doppler profiling in the Balearic Sea. Scientia mar. (in press)Google Scholar
  14. Conover, R. J., Durvasula, R., Roy, S., Wang, R. (1986). Probable loss of chlorophyll-derived pigments during passage through the gut of zooplankton, and some of the consequences. Limnol. Oceanogr. 31: 878–887Google Scholar
  15. Costello, J. H., Strickler, J. R., Marrasé C., Trager, G., Zeller, R., Freise, A. J. (1990). Grazing in a turbulent environment: behavioral response of a calanoid copepod, Centropages hamatus. Proc. natn. Acad. Sci. U.S.A. 87: 1648–1652Google Scholar
  16. Cowles, T. J., Olson, R. J., Chisholm, S. W. (1988). Food selection by copepods: discrimination between cells on the basis of food quality. Mar. Biol. 100: 41–49Google Scholar
  17. Cullen, J. J. (1982). The deep chlorophyll maximum: comparing vertical profiles of chlorophyll a. Can. J. Fish. aquat. Sciences 39: 791–803Google Scholar
  18. Dagg, M. J. (1977). Some effects of patchy food environments on copepods. Limnol. Oceanogr. 22: 99–107Google Scholar
  19. Dagg, M. J., Frost, B. W., Walser, W. E. (1989). Copepod diel migration, feeding and the vertical flux of pheopigments. Limnol. Oceanogr. 34: 1062–1071Google Scholar
  20. Dagg, M. J., Grill, D. W. (1980). Natural feeding rates of Centropages typicus females in the New York Bight. Limnol. Oceanogr. 25: 597–609Google Scholar
  21. Dagg, M. J., Walser, W. E., Jr. (1987). Ingestion, gut passage, and egestion by the copepod Neocalanus plumchrus in the laboratory and in the subartic Pacific Ocean. Limnol. Oceanogr. 32: 178–188Google Scholar
  22. Dagg, M. J., Wyman, K. D. (1983). Natural ingestion rates of the copepods Neocalanus plumchrus and N. cristatus calculated from gut contents. Mar. Ecol. Prog. Ser. 13: 37–46Google Scholar
  23. Dam, H. G., Peterson, W. T., Okubo, A. (1991). A simple mathematical analysis of the limitations to inferring feeding behavior of zooplankton from gut content. Mar. Ecol. Prog. Ser. 69: 41–51Google Scholar
  24. Estrada, M. (1985). Deep phytoplankton and chlorophyll maxima in the Western Mediterranean. In: Moraitou-Apostolopoulou, M., Kiortsis, V. (eds.) Mediterranean marine ecosystems. Plenum Press, New York, p. 247–277Google Scholar
  25. Estrada, M., Margalef, R. (1988). Supply of nutrients to the Mediterranean photic zone along a persistent front. In: Minas, H. J., Nival, P. (eds.) Océanographie pélagique méditerranéenne. Oceanol. Acta 9 (Spec. Issue): 133–142Google Scholar
  26. Font, J., Salat, J., Tintoré, J. (1988). Permanent features of the circulation in the Catalan Sea. In: Minas, H. J., Nival, P. (eds.) Océanographie pélagique méditerranéenne. Oceanol. Acta 9 (Spec. Issue): 51–57Google Scholar
  27. Fraga, F. (1976). Distribución del carbono orgánico particulado en la región de afloramiento del NO de Africa y su relación con el nitrógeno particulado. I. Marzo 1973. Resultados Exped. cient. B/O Cornide 5: 19–30Google Scholar
  28. Hansen, B., Berggreen, U C., Tande, K. S., Eilertsen, H. C. (1990), Post-bloom grazing by Calanus glacialis, C. finmarchicus and C. hyperboreus in the region of the Polar Front, Barents Sea. Mar. Biol. 104: 5–14Google Scholar
  29. Head, E. J. H. (1986). Estimation of arctic copepod grazing rates in vivo and comparison with in-vitro methods. Mar. Biol. 92: 371–379Google Scholar
  30. Head, E. J. H., Wang, R., Conover, R. J. (1984). Comparison of diurnal feeding rhythms in Temora longicornis and Centropages hamatus with digestive enzyme activity. J. Plankton Res. 6: 543–551Google Scholar
  31. Holligan, P. M., Harris, R. P., Newell, R. C., Harbour, D. S., Head, R. N., Linley, E. A. S., Lucas, M. I., Tranter, P. R. G., Weekley, C. M. (1984). Vertical distribution and partitioning of organic carbon in mixed, frontal and stratified waters of the English Channel. Mar. Ecol. Prog. Ser. 14: 111–127Google Scholar
  32. Huntley, M., Marin, E., Escritor, F. (1987). Zooplankton grazers as transformers of ocean optics: a dynamic model. J. mar. Res. 45: 911–945Google Scholar
  33. Jackson, G. A. (1980). Phytoplankton growth and zooplankton grazing in oligotrophic oceans. Nature, Lond. 284: 439–441Google Scholar
  34. Kiørboe, T. (1989). Phytoplankton growth rate and nitrogen content: implications for feeding and fecundity in a herbivorous copepod. Mar. Ecol. Prog. Ser. 55: 229–234Google Scholar
  35. Kiørboe, T., Kaas, H., Kruse, B., Møhlenberg, F., Tiselius, P., Aertebjerg, G. (1990). The structure of the pelagic food web in relation to water column structure in the Skagerrak. Mar. Ecol. Prog. Ser. 59: 19–32Google Scholar
  36. Kiørboe, T., Møhlenberg, F., Nicolajsen, H. (1982). Ingestion rate and gut clearance in the planktonic copepod Centropages hamatus (Lilljeborg) in relation to food concentration and temperature. Ophelia 21: 181–194Google Scholar
  37. Kiørboe, T., Tiselius, P. (1987). Gut clearance and pigment destruction in a herbivorous copepod, Acartia tonsa, and the determination of in situ grazing rates. J. Plankton Res. 9: 525–534Google Scholar
  38. La Violette, P. E., Tintoré, J., Font, J. (1990). The surface circulation in the Balearic Sea. J. geophys. Res. 95: 1559–1586Google Scholar
  39. Le Fevre, J., Frontier, S. (1988). Influence of temporal characteristics of physical phenomena on plankton dynamics, as shown in North-West European marine ecosystems. In: Rothschild, B. J. (ed.) Toward a theory on biological-physical interactions in the world ocean. Kluwer Academic Publishers, Dordrecht, p. 245–272Google Scholar
  40. Legendre, L., Demers, S. (1984). Towards dynamic biological oceanography and limnology (J. C. Stevenson Memorial Lecture). Can. J. Fish. aquat. Sciences 41: 2–19Google Scholar
  41. Mackas, D., Bohrer, R. (1976). Fluorescence analysis of zooplankton gut contents and investigation of diel feeding patterns. J. exp. mar. Biol. Ecol. 25: 77–85Google Scholar
  42. Mackas, D. L., Denman, K. L., Abbott, M. R. (1985). Plankton patchiness: biology in the physical vernacular. Bull. mar. Sci. 37: 652–664Google Scholar
  43. Margalef, R. (1978). Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanol. Acta 1: 493–509Google Scholar
  44. Margalef, R., Estrada, M. (1987). Synoptic distribution of summer microplankton (algae and protozoa) across the principal front in the Western Mediterranean. Investigación pesq. 51: 121–140Google Scholar
  45. Marrasé, C., Costello, J. H., Granata, T., Strickler, J. R. (1990). Grazing in a turbulent environment: energy dissipation, encounter rates, and efficacy of feeding currents in Centropages hamatus. Proc. natn. Acad. Sci. U.S.A. 87: 1653–1657Google Scholar
  46. Nicolajsen, H., Møhlenberg, F., Kiørboe, T. (1983). Algal grazing by the planktonic copepod Centropages hamatus and Pseudocalanus sp.: diurnal and seasonal variation during the spring phytoplankton bloom in the Oresund. Ophelia 22: 15–31Google Scholar
  47. Nival, P., Malara, G., Charra, R., Palazzoli, I., Nival, S. (1974). Etude de la respiration et de l'excrétion de quelques copépodes planctoniques (Crustacea) dans la zone de remontée d'eau profonde des côtes marocaines. J. exp. mar. Biol. Ecol. 15: 231–260Google Scholar
  48. Oviatt, C. (1981). Effects of different mixing schedules on phytoplankton, zooplankton and nutrients in marine microcosms. Mar. Ecol. Prog. Ser. 4: 57–67Google Scholar
  49. Owen, R. W. (1981). Fronts and eddies in the sea: mechanisms, interactions and biological effects. In: Longhurst, A. R. (ed.) Analysis of marine ecosystems. Pergamon, London, p. 197–233Google Scholar
  50. Peterson, W. T., Bellantoni, D. C. (1987). Relationship between water-column stratification, phytoplankton cell size and copepod fecundity in Long Island Sound and off central Chile. S. Afr. J. mar. Sci. 5: 411–421Google Scholar
  51. Roman, M. R., Yentsch, C. S., Gauzens, A. L., Phinney, D. A. (1986). Grazer control of the fine-scale distribution of phytoplankton in warm-core Gulf Stream rings. J. mar. Res. 44: 795–813Google Scholar
  52. Rothschild, B. J., Osborn, T. R. (1988). Small-scale turbulence and plankton contact rates. J. Plankton Res. 10: 465–474Google Scholar
  53. Saiz, E., Alcaraz, M. (1990). Pigment gut contents of copepods and deep phytoplankton maximum in the Western Mediterranean. J. Plankton Res. 12: 665–672Google Scholar
  54. Tett, P., Edwards, A. (1984). Mixing and plankton: an interdisciplinary theme in oceanography. Oceanogr. mar. Biol. A. Rev. 22: 99–123Google Scholar
  55. Vedernikov, V. I., Koblenz-Mishke, O. J., Sukhanova, I. N., Karabashob, G. S., Fisher, J. K. (1977). A comparison of the vertical distribution of seston, chlorophyll and pigment luminiscence in the equatorial and Peruvian regions of the Eastern Pacific Ocean. Polskie Archwm Hydrobiol 24: 215–226Google Scholar
  56. Wang, R., Conover, R. J. (1986). Dynamics of gut pigment in the copepod Temora longicornis and the determination of in situ grazing rates. Limnol. Oceanogr. 31: 867–877Google Scholar
  57. Yentsch, C. S., Menzel, D. W. (1963). A method for the determination of phytoplankton chlorophyll and pheophytin by fluorescence. Deep-Sea Res. 10: 221–231Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • E. Saiz
    • 1
  • V. Rodriguez
    • 2
  • M. Alcaraz
    • 1
  1. 1.Institut de Ciències del MarPaseo Nacional s/nBarcelonaSpain
  2. 2.Departmento de Ecologia, Facultad de CienciasUniversidad de MálagaMálagaSpain

Personalised recommendations