Skip to main content
Log in

Optimization of hot workability of an Al-Mg-Si alloy using processing maps

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The hot workability of an Al-Mg-Si alloy has been studied by conducting constant strain-rate compression tests. The temperature range and strain-rate regime selected for the present study were 300–550 °C and 0.001–1 s−1, respectively. On the basis of true stress data, the strain-rate sensitivity values were calculated and used for establishing processing maps following the dynamic materials model. These maps delineate characteristic domains of different dissipative mechanisms. Two domains of dynamic recrystallization (DRX) have been identified which are associated with the peak efficiency of power dissipation (34%) and complete reconstitution of as-cast microstructure. As a result, optimum hot ductility is achieved in the DRX domains. The strain rates at which DRX domains occur are determined by the second-phase particles such as Mg2Si precipitates and intermetallic compounds. The alloy also exhibits microstructural instability in the form of localized plastic deformation in the temperature range 300–350 °C and at strain rate 1 s−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. J. McQueen, E. Evangelista and N. D. Ryan, in “Proceedings of Recrystallization 90”, edited by T. Chandra, (Metallurgical Society of AIME, Warrendale, PA, 1990) p. 89.

    Google Scholar 

  2. H. J. McQueen, in “Proceedings of Hot Deformation of Aluminium Alloys”, edited by Langdon et al. (Minerals, Metals and Materials Society, 1991) p. 31, 105.

  3. H. Yamagata, Scripta Metall. Mater. 27 (1992) 201.

    Article  CAS  Google Scholar 

  4. H. J. McQueen and N. Ryum, Scand. J. Met. 14 (1985) 183.

    CAS  Google Scholar 

  5. M. Raghavan and E. Shapiro, Metall. Trans. 11A (1980) 117.

    Article  CAS  Google Scholar 

  6. M. A. Zaidi and T. Sheppard, Met. Sci. 16 (1982) 2229.

    Article  Google Scholar 

  7. K. J. Gardener and R. Grimes, ibid. 3–4 (1979) 216.

    Article  Google Scholar 

  8. T. Sheppard, N. C. Parsons and M. A. Zaidi, ibid. 17 (1983) 481.

    Article  Google Scholar 

  9. H. J. McQueen, E. Evangelista and M. E. Kassner, Z. Metallkde 82 (1991) 336.

    CAS  Google Scholar 

  10. F. R. Castro-Fernandez and C. M. Sellars, Mater. Sci. 4 (1988) 621.

    CAS  Google Scholar 

  11. A. Espedal, H. Gjestland and N. Ryum, Scand. J. Met. 18 (1989) 131.

    CAS  Google Scholar 

  12. E. Evangelista, A. Forcellese, F. Gabrielli and P. Mengucci, in “Proceedings of Hot Deformation of Aluminium Alloys”, edited by Langdon et al, (Minerals, Metals and Materials Society, 1991) p. 121.

  13. Y. V. R. K. Prasad, H. L. Gegel, S. M. Doraivelu, J. C. Malas, J. T. Morgan, K. A. Lark and D. A. Barker, Metall. Trans. 15A (1984) 1883.

    Article  CAS  Google Scholar 

  14. J. M. Alexander, “Modeling Hot Deformation of Steels: An Approach to Understanding and Behaviour” (Springer-Verlag, Berlin, 1989).

    Google Scholar 

  15. H. L. Gegel, “Experimental Verification of Process Models” (ASM, Metals Park, OH, 1983).

    Google Scholar 

  16. A. K. S. Kalyan Kumar, MS Thesis, Indian Institute of Science, Bangalore, India (1987).

    Google Scholar 

  17. Y. V. R. K. Prasad and N. Ravichandran, Bull. Mater. Sci. 14 (1991) 1241.

    Article  CAS  Google Scholar 

  18. R. Raj, Metall. Trans. 12A (1981) 1089.

    Article  Google Scholar 

  19. L. F. Mondolfo, “Aluminium Alloys: Structure and Properties” (Butterworths, London, 1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarkar, J., Prasad, Y.V.R.K. & Surappa, M.K. Optimization of hot workability of an Al-Mg-Si alloy using processing maps. JOURNAL OF MATERIALS SCIENCE 30, 2843–2848 (1995). https://doi.org/10.1007/BF00349653

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00349653

Keywords

Navigation