Skip to main content
Log in

Effect of inhibitors of carbonic anhydrase activity on photosynthesis in the red alga Soliera filiformis (Gigartinales: Rhodophyta)

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The effect of light intensity, pH and carbonic anhydrase (CA) inhibitors on photosynthesis of the red marine macroalgae Solieria filiformis (Kützing) Gabrielson, collected from Taliarte (Gran Canaria, Canary Islands) in 1991, has been investigated. Plants taken from the sea (“wild phenotype”) developed spherical morphology (“ball phenotype”) after 2 mo culture in aerated tanks. The photosynthetic oxygen evolution in the wild phenotype was saturated at 100 μmol photons m-2s-1, while the “ball” phenotype displayed saturation at 200 μmol photons m-2s-1. The inhibitors of total CA activity (6-ethoxizolamide) and extracellular CA activity (dextran-bound sulfonamide) inhibited photosynthesis at pH 8.2, to 90 and 50% respectively, in both phenotypes. No inhibition of the photosynthetic oxygen evolution was detected at pH 6.5. CA activity was associated with both supernatant and pellet fractions of crude extracts of S. filiformis. The rate of alkalization of the medium by the algae was dependent on light intensity. We suggest that carbon dioxide is the general form of inorganic carbon transported across the plasmamembrane in S. filiformis. HCO3 transport into the cell takes place simultaneously by an “indirect” mechanism (dehydration to CO2 catalyzed by CAext) and by direct uptake. Extracellular (CAext) and intracellular (CAint) CAs are involved in the mechanisms of inorganic carbon assimilation by S. filiformis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Axelsson, L. (1988). Changes in pH as a measure of photosynthesis by marine macroalgae. Mar. Biol. 97: 287–294

    Google Scholar 

  • Beer, S., Eshel, A. (1985). Determining phycoerythrin and phycocyanin concentrations in aqueous crude extracts of red algae. Aust. J. mar. Freshwat. Res. 36: 785–792

    Google Scholar 

  • Beer, S., Israel, A. (1990). Photsynthesis of Ulva fasciata. IV. pH, carbonic anhydrase and inorganic carbon conversions in the unstirred layer. Pl., Cell Envir. 13: 555–560

    Google Scholar 

  • Bidwell, R. G. S., McLachlan, J. (1985). Carbon nutrition of seaweeds: photosynthesis, photorespiration and respiration. J. exp. mar. Biol. Ecol. 86: 15–46

    Google Scholar 

  • Björk, M., Haglund, K., Ramazanov, Z., García-Reina, G. Pedersén, M. (1992). Inorganic carbon assimilation in the green seaweed Ulva rigida C. Ag. (Chlorophyta). Planta 187: 152–156

    Google Scholar 

  • Cook, C. M., Lanaras, T., Colman, B. (1986). Evidence for bicarbonate transport in species of red and brown macrophytic marine algae. J. exp. Bot. 37: 977–984

    Google Scholar 

  • Cook, C. M., Lanaras, T., Roubelakis-Angelakis, K. A. (1988). Bicarbonate transport and alkalization of the medium by four species of Rhodophyta. J. exp. Bot. 39: 1185–1198

    Google Scholar 

  • Falkowski, P. G., LaRoche, J. (1991). Acclimation to spectral irradiance in algae. J. Phycol. 27: 8–14

    Google Scholar 

  • Goyal, A., Tolbert, N. E. (1989). Uptake of inorganic carbon by isolated chloroplasts from air-adapted Dunaliella. Pl. Physiol. 89: 1264–1269

    Google Scholar 

  • Haglund, K., Björk, M., Ramazanov, Z., García-Reina, G., Pedersén, M. (1992). Role of carbonic anhydrase in photosynthesis and inorganic carbon assimilation in the red alga Gracilaria tenuistipitata. Planta 187:275–281

    Google Scholar 

  • Lucas, W. J. (1983). Photosynthetic assimilation of exogenous HCO 3 by aquatic plants. A. Rev. Pl. Physiol. 34: 71–104

    Google Scholar 

  • Mareus, Y., Volokita, M., Kaplan, A.. (1984). The location of the transporting system for inorganic carbon and the nature of the form translocated in Chlamydomonas reinhardtii. J. exp. Bot. 35: 1136–1144

    Google Scholar 

  • Morgan, K. C., Shacklock, P. F., Simpson, F. J. (1980). Some aspects of the culture of Palamaria plamata in greenhouse tanks. Botanica mar. 23: 765–770

    Google Scholar 

  • Moroney, J. V., Husic, D. H., Tolbert, N. E. (1985). Effect of carbonic anhydrase inhibitors on inorganic carbon accumulation by Chlamydomonas reinhardtii. Pl. Physiol. 77: 177–183

    Google Scholar 

  • Palmqvist, K., Ramazanov, Z., Samuelsson, G. (1990). The role of extracellular carbonic anhydrase for accumulation of inorganic carbon in the green alga Chlamydomonas reinhardtii. A comparison between wild-type and cell-walless mutant cells.Physiologia Pl. 80: 267–276

    Google Scholar 

  • Peterson, G. L. (1983). Determination of total protein. Meth. Enzym. 91: 95–119

    Google Scholar 

  • Provasoli, L. (1968). Media and prospects for the cultivation of marine algae. In: Watanabe, A., Hattori, A. (eds.) Cultures and collections of algae. Japanese Society of Plant Physiologists, Tokyo, p. 63–75 Proc. U.S.-Japan Conf. Hakone)

    Google Scholar 

  • Ramazanov, Z. M., Semenenko, V. E. (1988). Content of the CO2-dependent form of carbonic anhydrase as a function of light intensity and photosynthesis. Soviet Pl. Physiol. 35: 340–344

    Google Scholar 

  • Raven, J. A., Lucas, W. J. (1985). The energetics of carbon acquisition. In: Lucas, W. J., Berry, J. A. (eds.) Inorganic carbon uptake by aquatic photosynthetic organisms. American Society of Plant Physiologists. Rockwell, Maryland, p. 305–324

    Google Scholar 

  • Sand-Jensen, K., Gordon, D. M. (1984). Differential ability of marine and freshwater macrophytes to utilize HCO 3 and CO2. Mar. Biol. 80: 247–253

    Google Scholar 

  • Simpson, F. J., Neish, A. C., Shacklock, P. F., Robson, D. R. (1978). The cultivation of Chondrus crispus. Effect of pH on growth and production of carrageenin. Botanica mar. 21: 229–235

    Google Scholar 

  • Smith, R. G., Bidwell, R. G. S. (1987). Carbonic anhydrase-dependent inorganic carbon uptake by the red macroalga Chondrus crispus. Pl. Physiol. 83: 735–738

    Google Scholar 

  • Smith, R. G., Bidwell, R. G. S. (1989). Mechanism of photosynthetic carbon dioxide uptake by the red macroalga, Chondrus crispus. Pl. Physiol. 89: 93–99

    Google Scholar 

  • Sültemeyer, D. F., Miller, A. G., Espie, G. S., Fock, H. Canvin, D. T. (1989). Active CO2 transport by the green algae Chlamydomonas reinhardtii. Pl. Physiol. 89: 1213–1219

    Google Scholar 

  • Wintermans, J. F. G., De Mots, A. (1965). Spectrophotometric characteristics of chlorophylls a and b and their pheophytins in ethanol Biochim. biophys. Acta 109: 448–453

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. M. Pérès, Marseille

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gómez-Pinchetti, J.L., Ramazanov, Z. & García-Reina, G. Effect of inhibitors of carbonic anhydrase activity on photosynthesis in the red alga Soliera filiformis (Gigartinales: Rhodophyta). Marine Biology 114, 335–339 (1992). https://doi.org/10.1007/BF00349536

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00349536

Keywords

Navigation