Advertisement

Marine Biology

, Volume 114, Issue 2, pp 335–339 | Cite as

Effect of inhibitors of carbonic anhydrase activity on photosynthesis in the red alga Soliera filiformis (Gigartinales: Rhodophyta)

  • J. L. Gómez-Pinchetti
  • Z. Ramazanov
  • G. García-Reina
Article

Abstract

The effect of light intensity, pH and carbonic anhydrase (CA) inhibitors on photosynthesis of the red marine macroalgae Solieria filiformis (Kützing) Gabrielson, collected from Taliarte (Gran Canaria, Canary Islands) in 1991, has been investigated. Plants taken from the sea (“wild phenotype”) developed spherical morphology (“ball phenotype”) after 2 mo culture in aerated tanks. The photosynthetic oxygen evolution in the wild phenotype was saturated at 100 μmol photons m-2s-1, while the “ball” phenotype displayed saturation at 200 μmol photons m-2s-1. The inhibitors of total CA activity (6-ethoxizolamide) and extracellular CA activity (dextran-bound sulfonamide) inhibited photosynthesis at pH 8.2, to 90 and 50% respectively, in both phenotypes. No inhibition of the photosynthetic oxygen evolution was detected at pH 6.5. CA activity was associated with both supernatant and pellet fractions of crude extracts of S. filiformis. The rate of alkalization of the medium by the algae was dependent on light intensity. We suggest that carbon dioxide is the general form of inorganic carbon transported across the plasmamembrane in S. filiformis. HCO3 transport into the cell takes place simultaneously by an “indirect” mechanism (dehydration to CO2 catalyzed by CAext) and by direct uptake. Extracellular (CAext) and intracellular (CAint) CAs are involved in the mechanisms of inorganic carbon assimilation by S. filiformis.

Keywords

Photosynthesis HCO3 Macroalgae Inorganic Carbon Canary Island 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Axelsson, L. (1988). Changes in pH as a measure of photosynthesis by marine macroalgae. Mar. Biol. 97: 287–294Google Scholar
  2. Beer, S., Eshel, A. (1985). Determining phycoerythrin and phycocyanin concentrations in aqueous crude extracts of red algae. Aust. J. mar. Freshwat. Res. 36: 785–792Google Scholar
  3. Beer, S., Israel, A. (1990). Photsynthesis of Ulva fasciata. IV. pH, carbonic anhydrase and inorganic carbon conversions in the unstirred layer. Pl., Cell Envir. 13: 555–560Google Scholar
  4. Bidwell, R. G. S., McLachlan, J. (1985). Carbon nutrition of seaweeds: photosynthesis, photorespiration and respiration. J. exp. mar. Biol. Ecol. 86: 15–46Google Scholar
  5. Björk, M., Haglund, K., Ramazanov, Z., García-Reina, G. Pedersén, M. (1992). Inorganic carbon assimilation in the green seaweed Ulva rigida C. Ag. (Chlorophyta). Planta 187: 152–156Google Scholar
  6. Cook, C. M., Lanaras, T., Colman, B. (1986). Evidence for bicarbonate transport in species of red and brown macrophytic marine algae. J. exp. Bot. 37: 977–984Google Scholar
  7. Cook, C. M., Lanaras, T., Roubelakis-Angelakis, K. A. (1988). Bicarbonate transport and alkalization of the medium by four species of Rhodophyta. J. exp. Bot. 39: 1185–1198Google Scholar
  8. Falkowski, P. G., LaRoche, J. (1991). Acclimation to spectral irradiance in algae. J. Phycol. 27: 8–14Google Scholar
  9. Goyal, A., Tolbert, N. E. (1989). Uptake of inorganic carbon by isolated chloroplasts from air-adapted Dunaliella. Pl. Physiol. 89: 1264–1269Google Scholar
  10. Haglund, K., Björk, M., Ramazanov, Z., García-Reina, G., Pedersén, M. (1992). Role of carbonic anhydrase in photosynthesis and inorganic carbon assimilation in the red alga Gracilaria tenuistipitata. Planta 187:275–281Google Scholar
  11. Lucas, W. J. (1983). Photosynthetic assimilation of exogenous HCO3 by aquatic plants. A. Rev. Pl. Physiol. 34: 71–104Google Scholar
  12. Mareus, Y., Volokita, M., Kaplan, A.. (1984). The location of the transporting system for inorganic carbon and the nature of the form translocated in Chlamydomonas reinhardtii. J. exp. Bot. 35: 1136–1144Google Scholar
  13. Morgan, K. C., Shacklock, P. F., Simpson, F. J. (1980). Some aspects of the culture of Palamaria plamata in greenhouse tanks. Botanica mar. 23: 765–770Google Scholar
  14. Moroney, J. V., Husic, D. H., Tolbert, N. E. (1985). Effect of carbonic anhydrase inhibitors on inorganic carbon accumulation by Chlamydomonas reinhardtii. Pl. Physiol. 77: 177–183Google Scholar
  15. Palmqvist, K., Ramazanov, Z., Samuelsson, G. (1990). The role of extracellular carbonic anhydrase for accumulation of inorganic carbon in the green alga Chlamydomonas reinhardtii. A comparison between wild-type and cell-walless mutant cells.Physiologia Pl. 80: 267–276Google Scholar
  16. Peterson, G. L. (1983). Determination of total protein. Meth. Enzym. 91: 95–119Google Scholar
  17. Provasoli, L. (1968). Media and prospects for the cultivation of marine algae. In: Watanabe, A., Hattori, A. (eds.) Cultures and collections of algae. Japanese Society of Plant Physiologists, Tokyo, p. 63–75 Proc. U.S.-Japan Conf. Hakone)Google Scholar
  18. Ramazanov, Z. M., Semenenko, V. E. (1988). Content of the CO2-dependent form of carbonic anhydrase as a function of light intensity and photosynthesis. Soviet Pl. Physiol. 35: 340–344Google Scholar
  19. Raven, J. A., Lucas, W. J. (1985). The energetics of carbon acquisition. In: Lucas, W. J., Berry, J. A. (eds.) Inorganic carbon uptake by aquatic photosynthetic organisms. American Society of Plant Physiologists. Rockwell, Maryland, p. 305–324Google Scholar
  20. Sand-Jensen, K., Gordon, D. M. (1984). Differential ability of marine and freshwater macrophytes to utilize HCO3 and CO2. Mar. Biol. 80: 247–253Google Scholar
  21. Simpson, F. J., Neish, A. C., Shacklock, P. F., Robson, D. R. (1978). The cultivation of Chondrus crispus. Effect of pH on growth and production of carrageenin. Botanica mar. 21: 229–235Google Scholar
  22. Smith, R. G., Bidwell, R. G. S. (1987). Carbonic anhydrase-dependent inorganic carbon uptake by the red macroalga Chondrus crispus. Pl. Physiol. 83: 735–738Google Scholar
  23. Smith, R. G., Bidwell, R. G. S. (1989). Mechanism of photosynthetic carbon dioxide uptake by the red macroalga, Chondrus crispus. Pl. Physiol. 89: 93–99Google Scholar
  24. Sültemeyer, D. F., Miller, A. G., Espie, G. S., Fock, H. Canvin, D. T. (1989). Active CO2 transport by the green algae Chlamydomonas reinhardtii. Pl. Physiol. 89: 1213–1219Google Scholar
  25. Wintermans, J. F. G., De Mots, A. (1965). Spectrophotometric characteristics of chlorophylls a and b and their pheophytins in ethanol Biochim. biophys. Acta 109: 448–453Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • J. L. Gómez-Pinchetti
    • 1
  • Z. Ramazanov
    • 2
  • G. García-Reina
    • 1
  1. 1.Laboratorio de Biotecnología Vegetal MarinaUniversidad de Las Palmas de Gran CanariaLas PalmasSpain
  2. 2.Institute of Plant PhysiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations