Marine Biology

, Volume 114, Issue 2, pp 211–217 | Cite as

Selective predation on mature male Byblis japonicus (amphipoda: Gammaridea) by the barface cardinalfish, Apogon semilineatus

  • H. Sudo
  • M. Azeta


In our study conducted in Shijiki Bay, Japan, in 1983 nocturnal barface cardinalfish (Apogon semilineatus) fed almost exclusively on mature males of the infaunal tube-dwelling gammarid Byblis japonicus. This predation pattern cannot be explained in terms of the sex composition of B. japonicus in the sediment, because mature males were the least abundant members of the population. Rather, this phenomenon may be explained by two alternative factors: diel vertical migration and size of prey. At night many gammarids, including B. japonicus, move up to the near-bottom water, and consequently become available to A. semilineatus, an epibenthos and/ or plankton feeder. Among these gammarids, juvenile B. japonicus and other gammarid species were more abundant than mature males, but were too small for A. semilincatus to prey on. Since mature B. japonicus males were the most abundant form of epibenthic and/or planktonic, large bodied prey present, the diet of A. semilineatus was limited almost entirely to these mature males. The sex ratio difference between B. japonicus individuals in the sediment and those in the near-bottom water indicated that vertical migration in this species has two functions: to assure the dispersal of juveniles and to allow mating contact for mature males.


Japan Migration Assure Mature Male Vertical Migration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Azeta, M., Ikemoto, R., Azuma, M. (1980). Distribution and growth of demersal 0-age red sea bream, Pagrus major, in Shijiki Bay. Bull. Seikai Reg. Fish. Res. Lab. 54: 259–278 (in Japanese with English abstract)Google Scholar
  2. Azeta, M., Ikemoto, R., Sudo, H., Azuma, M. (1983). Feeding habits of a cardinal fish, Apogon semilineatus, in Shijiki Bay (Hirado Island, Nagasaki Pref.) laying stress on relationships to 0-group red sea bream (Pagrus major). Bull. Seikai Reg. Fish. Res. Lab. 59: 85–99 (in Japanese with English abstract)Google Scholar
  3. Barnard, J. L. (1954). Amphipoda of the family Ampeliscidae collected in the eastern Pacific Ocean by Verero III and Verero IV. Allan Hancock Pacif. Exped. 18: 1–137Google Scholar
  4. Biernbaum, C. K. (1979). Influence of sedimentary factors on the distribution of benthic amphipods of Fishers Island Sound, Connecticut. J. exp mar. Biol. Ecol. 38: 201–223Google Scholar
  5. Borowsky, B., Aitken-Ander, P. (1991). Sexually dimorphic freeswimming behaviour in the amphipod crustacean Ampelisca abdita. J. mar. biol. Ass. U.K. 71: 655–663Google Scholar
  6. Brooks, J. L., Dodson, S. I. (1965). Predation, body size, and composition of the plankton. Science, N. Y. 150: 28–35Google Scholar
  7. Chrystal, P. J., Potter, I. C., Loneragan, N. R., Holt, C. P. (1985). Age structure, growth rates, movement patterns and feeding in an estuarine population of the cardinalfish Apogon rueppellii. Mar. Biol. 85: 185–197Google Scholar
  8. Coyle, K. O., Highsmith, R. C. (1989). Arctic ampeliscid amphipods: three new species. J. Crustacean Biol. (Lawrence, Kansas) 9: 157–175Google Scholar
  9. Dahl, E. (1945). Amphipoda of the family Ampeliscidae from Professor Sixten Bock's Expedition to Japan 1914. Arkiv Zool. 36A: 1–18Google Scholar
  10. Dickinson, J. J. (1982). The systematics and distributional ecology of the family Ampelicidae (Amphipods: Gammaridea) in the northeastern Pacific region. I. The genus Ampelisca. Publs biol. Oceanogr. natn. Mus. Can. 10: 1–39Google Scholar
  11. Edmunds, M. (1974). Defence in animals: a survey of anti-predator defences. Longman, Harlow, EnglandGoogle Scholar
  12. Enequist, P. (1949). Studies on the soft-bottom amphipods of the Skagerral. Zool. Bidr. Upps. 28: 297–492Google Scholar
  13. Hirayama, A. (1983). Taxonomic studies on the shallow water gammaridean Amphipoda of west Kyushu, Japan. I. Acanthonotozomatidae, Ampeliscidae, Ampithoidae, Amphilochidae, Amanixidae, Atylidae and Colomastigidae. Publ. Seto mar. biol. Lab. 28: 75–150Google Scholar
  14. Hobson, E. S. (1965). Diurnal-nocturnal activity of some inshore fishes in the Gulf of California. Copeia 1965: 291–302Google Scholar
  15. Hobson, E. S. (1974). Feeding relationships of teleostean fishes on coral reefs in Kona, Hawaii. Fish. Bull. U.S. 72: 915–1031Google Scholar
  16. Hobson, E. S., Chess, J. R. (1979). Zooplankton that emerge from the laggon floor at night at Kure and Midway Atolls, Hawaii. Fish. Bull. U.S. 77: 275–280Google Scholar
  17. Kimoto, K., Nakashima, J., Morioka, Y. (1988). Direct observations of copepod swarm in a small inlet of Kyushu, Japan. Bull. Seikai Reg. Fish. Res. Lab. 66: 41–58Google Scholar
  18. Kislalioglu, M., Gibson, R. N. (1976a). Prey “handling time” and its importance in food selection by the 15-spined stickleback, Spinachia spinachia (L.). J. exp. mar. Biol. Ecol. 25: 151–158Google Scholar
  19. Kislalioglu, K., Gibson, R. N. (1976b). Some factors governing prey selection by the 15-spined stickleback, Spinachia spinachia (L.). J. exp. mar. Biol. Ecol. 25: 159–169Google Scholar
  20. Mendoza, J. A. (1982). Some aspects of the autoecology of Leptochella dubia (Krøyer, 1842) (Tanaidacea). Crustaceana 43: 225–240Google Scholar
  21. Mills, E. L. (1967). The biology of an ampeliscid crustacean sibling species pair. J. Fish. Res. Bd Can. 24: 305–355Google Scholar
  22. Nagata, K. (1960). Preliminary notes on benthic gammaridean Amphipoda from the Zostera region of Mihara Bay, Seto Inland Sea, Japan. Publ. Seto mar. biol. Lab. 8: 163–182Google Scholar
  23. Nagata, K. (1965). Studies on marine gammaridean Amphipoda of Seto Inland Sea. I. Publ. Seto mar. biol. Lab. 13: 131–170Google Scholar
  24. O'Brien, W. J. (1979). The predator-prey interaction of planktivorous fish and zooplankton. Am. Scient. 67: 572–581Google Scholar
  25. O'Brien, W. J., Slade, N. A., Vinyard, G. L. (1976). Apparent size as the determinant of prey selection by bluegill sunfish (Lepomis macrochirus). Ecology 57: 1304–1310Google Scholar
  26. Pinkas, L., Oliphant, M. S., Iverson, I. L. K. (1971). Food habits of albacore, bluefin tuna, and bonito in California waters. Calif. Dep. Fish Game Fish Bull. 152: 1–105Google Scholar
  27. Robertson, A. I., Howard, R. K. (1978). Diel trophic interactions between vertically-migrating zooplankton and their fish predators in an eelgrass community. Mar. Biol. 48: 207–213Google Scholar
  28. Sandström, O. (1980). Selective feeding by Baltic herring. Hydrobiologia 69: 199–207Google Scholar
  29. Schoener, T. W. (1968). The Anolis lizards of Bimini: resource partitioning in a complex fauna. Ecology 49: 704–726Google Scholar
  30. Stoner, A. W. (1979). Species-specific predation on amphipod Crustacea by the pinfish Lagodon rhomoboides: mediation by macrophyte standing crop. Mar. Biol. 55: 201–207Google Scholar
  31. Sudo, H. (1988). Diel predator-prey interactions between fishes and gammarids. In: Hanyu, I., Tabata, M. (eds.) Daily rhythmic activities in aquatic animals. Koseisha-Koseikaku, Tokyo, p. 117–133 (in Japanese)Google Scholar
  32. Sudo, H., Azeta, M., Azuma, M. (1987). Diel changes in predatorprey relationships between red sea bream and gammaridean amphipods in Shijiki Bay. Nippon Suisan Gakk. 53: 1567–1575Google Scholar
  33. Vivien, M. L. (1975). Place of apogonid fish in the food webs of a Malagasy coral reef. Micronesica 11: 185–198Google Scholar
  34. Vuorinen, I., Rajasilta, M., Salo, J. (1983). Selective predation and habitat shift in a copepod species: support for the predation hypothesis. Oecologia 59: 62–64Google Scholar
  35. Werner, E. E., Hall, D. J. (1974). Optimal foraging and the size selection of prey by the bluegill sunfish (Lepomis macrochirus). Ecology 55: 1042–1052Google Scholar
  36. Winfield, I. J., Peirson, G., Cryer, M., Townsend, C. R. (1983). The behavioural basis of prey selection by underyearling bream (Abramis brama (L.)) and roach (Rutilus rutilus (L.)). Freshwat. Biol. 13: 139–149Google Scholar
  37. Winfield, I. J., Townsend, C. R. (1983). The cost of copepod reproduction: increased susceptibility to fish predation. Occologia 60: 406–411Google Scholar
  38. Zaret, T. M. (1980). The effect of prey motion on planktivore choice. In: Kerfoot, W. C. (ed.) Evolution and ecology of zooplankton communities. University Press of New England, Hanover, New Hampshire, p. 594–603Google Scholar
  39. Zaret, T. M., Kerfoot, W. C. (1975). Fish predation on Bosmina longirostris: body-size selection versus visibility selection. Ecology 56: 232–237Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • H. Sudo
    • 1
  • M. Azeta
    • 2
  1. 1.Fisheries Agency of JapanSeikai National Fisheries Research InstituteNagasakiJapan
  2. 2.Research Disision of Fisheries Agency of JapanChiyoda, TokyoJapan

Personalised recommendations