Skip to main content
Log in

Evolutionary relationships among deep-sea mytilids (Bivalvia: Mytilidae) from hydrothermal vents and cold-water methane/sulfide seeps

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

A protein electrophoretic survey of mytilids inhabiting deep-sea hydrothermal vents and cold-water methane/sulfide seeps revealed electromorph patterns diagnostic of 10 distinct species. From hydrothermal vents located at sites on the Galápagos Rift, the Mid-Atlantic Ridge, and the Mariana Back Arc Basin, we detected four species of mytilids. Six additional species were detected from three cold-water seep sides in the Gulf of Mexico. The patchy distribution and temporal stability of seeps may provide a greater opportunity for mytilid diversification and persistence than vent sites Nei's genetic distances (D) between species were relatively large (range: 0.528 to ∞) both within and among habitat types. This pronounced degree of genetic differentiation suggests a relatively ancient common ancestor for the group. Phylogenetic trees were generated using distance Wagner and parsimony analyses of allozyme and morphological characters. The tree topologies obtained from both methods support: (1) the hypothesis that a seep ancestor gave rise to the deep-sea hydrothermal vent mytilids, (2) a historical progression from shallow-water to deep-water habitats, and (3) a co-evolutionary progression from external to internal localization of bacterial symbionts. Whether the seep mytilid taxa constitute paraphyletic or polyphyletic groups remains unresolved. Our phylogenetic hypotheses also provide a benchmark for the phylogeny of mytilid bacterial symbionts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baker HG (1965) Characteristics and modes of origin of weeds. In: Baker HG, Stebbins GL (eds) Genetics of colonizing species. Academic Press, New York, pp 147–172

    Google Scholar 

  • Barrett M, Donoghue MJ, Sober E (1991) Against consensus. Syst Zool 40:486–493

    Google Scholar 

  • Bougault H, Charlou JL, Fouquet Y, Needham HD, Vaslet N, Appriou P, Batiste PJ, Rona PA, Dmitriev L, Silantiev D (1993) Fast and slow spreading ridges: structure and hydrothermal activity, ultramafic topographic highs, and CH4 output. J geophys Res 98:9643–9651

    Google Scholar 

  • Brooks JM, Kennicutt II MC, Bidigare RR, Fay RR (1985) Hydrates, oil seepage and chemosynthetic ecosystems on the Gulf of Mexico slope. Eos Trans, Am geophys Un 66: p 105

  • Brooks JM, Kennicutt II MC, Bidigare RR, Wade TL, Powell E, Denoux GJ, Fay RR, Childress JJ, Fisher CR, Rosman I, Boland G (1987) Hydrates, oil seepage, and chemosynthetic ecosystems on the Gulf of Mexico slope: An update. Eos Trans, Am geophys Un 68:498–499

    Google Scholar 

  • Brooks JM, Wiesenburg DA, Roberts H, Carney RS, MacDonald IR, Fisher CR, Guinasso Jr NL, Sager WW, McDonald SJ, Burke Jr RA (1990) Salt, seeps, and symbiosis in the Gulf of Mexico. Eos Trans, Am geophys Un 71:1772–1773

    Google Scholar 

  • Butterfield DA, Massoth GJ, McDuff RE, Lupton JE, Lilley MD (1990) The chemistry of phase separated hydrothermal fluids from axial seamount hydrothermal emissions study (ASHES) vent field, Juan de Fuca Ridge: subseafloor boiling and subsequent fluid-rock interaction. J geophys Res 95:12895–12921

    Google Scholar 

  • Campbell AC, Palmer MR, Klinkhammer GP, Bowers TS, Edmond JM, Lawrence JR, Casey JF, Thompson G, Humphris S, Rona P, Karson J (1988) Chemistry of hot springs on the Mid-Atlantic Ridge. Nature, Lond 335:514–519

    Google Scholar 

  • Cavalli-Sforza LL, Edwards AWF (1967) Phylogenetic analysis: models and estimation procedures. Am J hum Genet 19:233–257

    Google Scholar 

  • Cavanaugh CM, Levering PR, Maki JS, Mitchell R, Lidstrom ME (1987) Symbiosis of methylotrophic bacteria and deep-sea mussels. Nature, Lond 325:346–348

    Google Scholar 

  • Distel DL, Lane DJ, Olsen GJ, Giovannoni SJ, Pace B, Pace NR, Stahl DA, Felbeck H (1988) Sulfur-oxidizing bacterial endosymbionts: analysis of phylogeny and specificity by 16s rRNA sequences. J Bact 170:2506–2510

    Google Scholar 

  • Fink WL (1982) The conceptual relationship between ontogeny and phylogeny. Paleobiology 8:254–264

    Google Scholar 

  • Fisher CR (1990) Chemoautotrophic and methanotrophic symbioses in marine invertebrates. Rev aquat Sciences 2(3/4):399–436

    Google Scholar 

  • Fisher CR (1993) Oxidation of methane by deep-sea mytilids in the Gulf of Mexico. In: Oremland RS (ed) Biogeochemistry of global change: radiatively active trace gases. Chapman & Hall, London, pp 606–619

    Google Scholar 

  • Fustec A, Desbruyeres D, Juniper SK (1987) Deep-sea hydrothermal vent communities at 13°N on the East Pacific Rise: microdistribution and temporal variations. Biol Oceanogr 4:121–164

    Google Scholar 

  • Gaffney PM, Scott TM, Koehn RF, Diehl WJ (1990) Interrelationships of heterozygosity, growth rate and heterozygote deficiencies in the coot clam, Mulinia lateralis. Genetics, Austin, Tex 124:687–699

    Google Scholar 

  • Grassle JF (1986a) Animals at Mid-Atlantic Ridge hydrothermal vents. Eos Trans, Am geophys Un 67:p 1100

    Google Scholar 

  • Grassle JF (1986b) The ecology of deep-sea hydrothermal vent communities. Adv mar Biol 23:301–362

    Google Scholar 

  • Grassle JP (1985) Genetic differentiation in populations of hydrothermal vent mussels (Bathymodiolus tehrmophilus) from the Galapagos Rift and 13°N on the East Pacific Rise. Bull biol Soc Wash 6:429–442

    Google Scholar 

  • Hecker B (1985) Fauna from a cold sulfur seep in the Gulf of Mexico: comparison with hydrothermal vent communities and evolutionary implications. Bull biol Soc Wash 6:465–474

    Google Scholar 

  • Hessler RR, Lonsdale PF (1991) Biogeography of Mariana trough hydrothermal vent communities. Deep-Sea Res 38:185–199

    Google Scholar 

  • Hessler R, Lonsdale P, Hawkins J (1988a) Patterns on the ocean floor. New Scient 24:47–51

    Google Scholar 

  • Hessler RR, Smithey WM, Boudrias MA, Keller CH, Lutz RA, Childress JJ (1988b) Temporal change in megafauna at the Rose Garden hydrothermal vent (Galapagos Rift; eastern tropical Pacific). Deep-Sea Res 35:1681–1709

    Google Scholar 

  • Jannasch HW (1989) Chemosynthetically sustained ecosystems in the deep sea. In: Schlegel HG, Bowien B (eds) Autotrophic bacteria. Science Tech Publishers, and Springer-Verlag, Madison and Berlin, pp 147–166

    Google Scholar 

  • Jones TR, Kluge AG, Wolf AJ (1993) When theories and methodologies clash: a phylogenetic reanalysis of the North American ambystomatid salamanders (Caudata: Ambystomatidae). Syst Biol 42:92–102

    Google Scholar 

  • Kennicutt II MC, Brooks JM, Bidigare RR, Denoux GJ (1988) Gulf of Mexico hydrocarbon seep communities. I. Regional distribution of hydrocarbon seepage and associated fauna. Deep-Sea Res 35:1639–1651

    Google Scholar 

  • Kennicutt II MC, Brooks JM, Bidigare RR, Fay RR, Wade TL, Mcdonald TJ (1985) Vent-type taxa in a hydrocarbon seep region on the Louisiana Slope. Nature, Lond 317:351–353

    Google Scholar 

  • Kluge AG (1989) A concern for evidence and a phylogenetic hypothesis of relationships among Epicrates (Boidae, Serpentes) Syst Zool 38:7–25

    Google Scholar 

  • Lalou C, Brichet E (1982) Ages and implications of East Pacific Rise sulphide deposits at 21°N. Nature, Lond 300:169–171

    Google Scholar 

  • Lalou C, Reyss JL, Brichet E, Arnold M, Thompson G, Fouquet Y, Rona PA (1993) New age data for Mid-Atlantic Ridge hydrothermal sites: TAG and Snakepit chronology revisited. J geophys Res 98:9705–9713

    Google Scholar 

  • MacDonald IR, Boland GS, Baker JS, Brooks JM, Kennicutt II MC, Bidigare RR (1989) Gulf of Mexico hydrocarbon seep communities. II. Spatial distribution of seep organisms and hydrocarbons at Bush Hill. Mar Biol 101:235–247

    Google Scholar 

  • MacDonald IR, Callender WR, Burke Jr RA, McDonald SJ, Carney RS (1990a) Fine-scale distribution of methanotrophic mussels at a Louisiana cold seep. Prog Oceanogr 24:15–24

    Google Scholar 

  • MacDonald IR, Guinasso Jr NL, Reilly II JF, Brooks JM, Callender WR, Gabrielle SG (1990b) Gulf of Mexico hydrocarbon seep communities: VI patterns in community structure and habitat. Geo-mar Lett 10:244–252

    Google Scholar 

  • MacDonald IR, Reilly II JF, Guinasso Jr NL, Brooks JM, Carney RS, Bryant WA, Bright TJ (1990c) Chemosynthetic mussels at a brine-filled pockmark in the northern Gulf of Mexico. Science, NY 248:1096–1099

    Google Scholar 

  • Macdonald KC (1982) Mid-ocean ridges: fine scale tectonic volcanic and hydrothermal processes within the plate boundary zone. A Rev Earth planet Sciences 10:155–190

    Google Scholar 

  • Macdonald KC, Fox PJ, Perram LJ, Eisen MF, Haymon RM, Miller SP, Carbotte SM, Cormier M-H, Shor AN (1988) A new view of the mid-ocean ridge from the behaviour of ridge-axis discontinuities. Nature, Lond 335:217–225

    Google Scholar 

  • Maddison WP, Maddison DR (1992) MacClade. Sinauer Associates, Inc., Sunderland, Massachusetts

    Google Scholar 

  • McLean JH (1985) Preliminary report on the limpets at hydrothermal vents. Bull biol Soc Wash 6:159–166

    Google Scholar 

  • Mulvey M, Vrijenhoek RC (1982) Population structure in Biomphalaria glabrata: examination of an hypothesis for the patchy distribution of susceptibility to schistosomiasis. Am J trop Med Hyg 31:1195–1200

    Google Scholar 

  • Murphy RW, Sites Jr JW, Buth DG, Houfler CH (1990) Proteins I: Isozyme electrophoresis. In: Hillis D, Moritz C (eds) Molecular systematics. Sinauer Assoc. Inc., Sunderland, Massachusetts, pp 45–126

    Google Scholar 

  • Needham HD, Carre D (1990) Transit PABRE. Oceanol Acta (Spec Vol) 10:343–347

    Google Scholar 

  • Needham HD, Francheteau J (1974) Some characteristics of the rift valley in the Atlantic Ocean near 36°48′N. Earth planet Sci Lett 22:29–43

    Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, Austin, Tex 89:583–590

    Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Newman WA (1985) The abyssal hydrothermal vent invertebrate fauna, a glimpse of antiquity? Bull biol Soc Wash 6:231–242

    Google Scholar 

  • Paull CK, Hecker B, Commeau R, Freeman-Lynde RP, Neumann C, Corso WP, Golubic S, Hook JE, Sikes E, Curray J (1984) Biological communities at the Florida escarpment resemble hydrothermal vent taxa. Science, NY 226:965–967

    Google Scholar 

  • Richter-Bernburg G (1987) Deformation within salt bodies. In: Lerche I, O'Brien JJ (eds) Dynamical geology of salt and related structures. Academic Press, Inc., Orlando, Florida, pp 39–75

    Google Scholar 

  • Sempere J-C, Purdy GM, Schouten H (1990) Segmentation of the Mid-Atlantic Ridge between 24°N and 30°40′N. Nature, Lond 344:427–431

    Google Scholar 

  • Skibinski DOF, Beardmore JA, Cross TF (1983) Aspects of the population genetics of Mytilus (Mytilidae; Mollusca) in the British Isles. Biol J Linn Soc 19:137–183

    Google Scholar 

  • Skibinski DOF, Cross TF, Ahmad M (1980) Electrophoretic investigation of systematic relationships in the marine mussels Modiolus modiolus L., Mytilus edulis L., and Mytilus galloprovincialis Lmk. (Mytilidae; Mollusca). Biol J Linn Soc 13:65, 73137/183

    Google Scholar 

  • Swofford DL (1990) PAUP: Phylogenetic analysis using parsimony, Version 3.0. Illinois Natural History Survey, Champaign, Illinois

    Google Scholar 

  • Swofford DL, Selander RK (1981) BIOSYS-1: a Fortran program for the comprehensive analysis of electrophoretic data in population genetics and systematics. J Hered 72:281–283

    Google Scholar 

  • Thompson G, Humphris SE, Schroeder B, Sulanowska M, Rona PA (1988) Active vents and massive sulfides at 26°N (TAG) and 23°N (Snakepit) on the Mid-Atlantic Ridge. Can Mineralogist 26:697–711

    Google Scholar 

  • Tunnicliffe V (1991) The biology of hydrothermal vents: ecology and evolution. Oceanogr mar Biol A Rev 29:319–407

    Google Scholar 

  • Tunnicliffe V, Juniper SK (1990) Dynamic character of the hydrothermal vent habitat and the nature of sulphide chimney fauna. Prog Oceanogr 24:1–13

    Google Scholar 

  • Van Dover CL (1990) Biogeography of hydrothermal vent communities along seafloor spreading centers. Trends Ecol Evol 5:238–243

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by N. H. Marcus, Tallahassee

Rights and permissions

Reprints and permissions

About this article

Cite this article

Craddock, C., Hoeh, W.R., Gustafson, R.G. et al. Evolutionary relationships among deep-sea mytilids (Bivalvia: Mytilidae) from hydrothermal vents and cold-water methane/sulfide seeps. Marine Biology 121, 477–485 (1995). https://doi.org/10.1007/BF00349456

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00349456

Keywords

Navigation