Skip to main content
Log in

Kinetic changes in flexor myosin ATPase of Scylla serrata adapted to different salinities

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Kinetic properties such as the Michaelis-Menten constant and the activation energy of the flexor muscle myosin ATPase were investigated in the estuarine crab Scylla serrata. These properties varied at different salinities, but the extractability of the enzyme remained unaltered. The qualitative changes upon salinity adaptation are discussed with reference to estuarine conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Barany, M. and K. Barany: Myosin from the striated adductor muscle of the scallop (Pecten arradians). Biochem. Z. 345, 37–56 (1966).

    Google Scholar 

  • —, T. E. Conover, H. Schliselfeld, D. Gaetjens and M. Goffart: Relation of properties of isolated myosin to those of intact muscle of the cat and sloth. Eur. J. Biochem. 2, 156–164 (1967).

    Google Scholar 

  • Brahms, J. and C. M. Kay: Molecular and enzymatic properties of cardiac myosin A as compared with those of skeletal muscle myosin A. J. Biol. Chem. 238, 198–205 (1963).

    Google Scholar 

  • Das, A. B. and R. V. Krishnamoorthy: Thermal acclimation in adenosine triphosphatase of myosin obtained from goldfish skeletal muscle. Indian Biologist 1 (2), 30–33 (1969).

    Google Scholar 

  • Dixon, M. and E. C. Webb: Enzymes, 2nd ed. 950 pp. New York: Academic Press 1964.

    Google Scholar 

  • Fiske, C. H. and Y. Subbarow: The colorimetric determination of phosphorus. J. biol. Chem. 66, 375–400 (1925).

    Google Scholar 

  • Giese, A. C.: Temperature as a factor in the cell environment. In: Cell physiology pp 235–251. 3rd ed. International Students' edition. Japan: Toppan Co. 1968.

    Google Scholar 

  • Hasselbach, W. and G. Schneider: Der L-Myosin-und Aktingehalt des Kaninchenmuskels. Biochem. Z. 321, 462–475 (1951).

    Google Scholar 

  • Itzaki, R. F. and D. M. Gill: A micro-Biuret method for estimating proteins. Analyt. Biochem. 9, 401–410 (1964).

    Google Scholar 

  • Kiely, B. and A. Martinosi: Kinetics and substrate binding of myosin adenosine triphosphatase. J. biol. Chem. 243, 2273–2278 (1968).

    Google Scholar 

  • Kinne, O.: Physiological aspects of animal life in estuaries with special reference to salinity. Neth. J. Sea Res. 3, 222–244 (1966).

    Google Scholar 

  • Kinne, O.: Non-genetic adaptation in crustacea. In: Proceedings of Symposium on Crustacea. Pt 3. Symp. Ser. mar. [Biol. ass. India. 2, 999–1007 (1967)].

  • Krishnamoorthy, R. V. and A. Venkataramiah: Myosin ATPase activity in an estuarine decapod crustacean, Scylla serrata, as a function of salinity adaptation. Mar. Biol. 4, 345–348 (1969).

    Google Scholar 

  • — and V. Venkata Reddy: Hepatopancreatic amylase activity as a function of warm-adaptation in a fresh water field crab. Experientia 24, 1019–1020 (1968).

    Google Scholar 

  • Leenders, H. J.: Catch, peak tension and ATPase activity in glycerinated oyster adductor. Comp. Biochem. Physiol. 31, 187–196 (1969).

    Google Scholar 

  • Mahler, H. R. and E. H. Cordes: Biological chemistry, 872 pp. New York: Harper & Row 1966.

    Google Scholar 

  • McCarl, R. L., S. S. Margossian, I. M. Jackman and R. L. Webb: Characterization of rat heart myosin. II Enzymatic properties. Biochemistry 8, 3659–3664 (1969).

    Google Scholar 

  • Nanninga, L. B. and W. F. H. M. Mommaerts: Kinetic constants of the interaction between myosin and adenosine triphosphate. Proc. Natn. Acad. Sci. U.S.A. 46, 1166–1173 (1960).

    Google Scholar 

  • Ouellet, L., K. J. Laidler and M. F. Morales: Molecular kinetics of muscle adenosine triphosphatase. Archs Biochem. Biophys. 39, 37–50 (1952).

    Google Scholar 

  • Perry, S. V.: Myosin adenosine triphosphatase. In: Methods in enzymology, Vol. 2, pp 582–583. Ed. by S. P. Colowick and N. O. Kalpan, New York: Academic Press 1955.

    Google Scholar 

  • — The structure and interaction of myosin. In: Progress in biophysics and molecular biology, Vol. 17, pp 327–381. Ed. by J. A. V. Butler and D. Noble. Oxford: Pergamon Press 1967.

    Google Scholar 

  • Prosser, C. L.: The nature of physiological adaptation. In: Physiological adaptation, pp 167–180. Ed. by C. L. Prosser. Washington: American Physiological Society 1958.

    Google Scholar 

  • Szent-Gyorgyl, A. G.: The role of actin-myosin interaction in contraction. In: Aspects of cell motility. Symposia of the society for Experimental Biology. No. 22, pp 87–100. Ed. by P. L. Miller. Cambridge: Cambridge University Press 1968.

    Google Scholar 

  • Venkatramiah, A.: Studies on the hydrobiology of the Krishna estuary: salinity, adaptive physiology of selected estuarine species. Doct. diss. Sri Venkateswara University, Tirupati, A. P. India 1966.

  • Young, M.: The molecular basis of muscle contraction. A. Rev. Biochem. 38, 913–950 (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by N. K. Panikkar, Panaji

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krishnamoorthy, R.V., Venkatramiah, A. Kinetic changes in flexor myosin ATPase of Scylla serrata adapted to different salinities. Marine Biology 8, 30–34 (1971). https://doi.org/10.1007/BF00349342

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00349342

Keywords

Navigation