Skip to main content
Log in

Calorespirometry of developing embryos and yolk-sac larvae of turbot (Scophthalmus maximus)

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The rates of oxygen consumption and heat dissipation were simultaneously measured and related to contents of glucose, glycogen and lactate in order to determine whether anaerobic processes contributed significantly to the energy metabolism of developing turbot embryos and larvae. The results suggest that metabolism is fully aerobic between Days 0 and 12 post fertilisation. The data further suggest that glycogen is the sole metabolic fuel during the first 18 to 19 h post fertilisation. After the commencement of epiboly, carbohydrates play an insignificant role in the energy metabolism of the developing embryo and yolk-sac larva.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amberson WR, Armstrong PB (1933) The respiratory metabolism of Fundulus heteroclitus during embryonic development. J Cell comp Physiol 2:387–397

    Google Scholar 

  • Blazka P (1958) The anaerobic metabolism of fish. Physiol Zool 31:117–128

    Google Scholar 

  • Boulekbache H (1981) Energy metabolism in fish development. Am Zool 21:377–389

    Google Scholar 

  • Burton DT, Spehar AM (1971) A re-evaluation of the anaerobic end products of freshwater fish exposed to environmental hypoxia. Comp Biochem Physiol 40A:945–954

    Google Scholar 

  • Cetta CM, Capuzzo JM (1982) Physiological and biochemical aspects of embryonic and larval development of the winter flounder (Pseudopleuronectes americanus). Mar Biol 71:327–337

    Google Scholar 

  • Daniel RJ (1947) Distribution of glycogen in the developing salmon (Salmo salar L.). J exp Biol 24:123–144

    Google Scholar 

  • Davenport J (1983) Oxygen and the developing eggs and larvae of the lumpfish (Cyclopterus lumpus). J mar biol Ass UK 63: 633–640

    Google Scholar 

  • Davenport J, Lønning S (1980) Oxygen uptake in developing eggs and larvae of the cod (Gadus morhua). J Fish Biol 16:249–256

    Google Scholar 

  • Devillers C, Rosenberg J (1953) Les premières phases du développment de l'œuf de Salmo irrideus en anaérobiose. Cr Acad Sci 237:1561–1562

    Google Scholar 

  • Eldridge MB, Echeverria T, Whipple JA (1977) Energetics of Pacific herring (Clupea harengus pallasi) embryos and larvae exposed to low concentrations of benzene. Am Fish Soc 106:452–461

    Google Scholar 

  • Finn RN, Fyhn HJ, Evjen MS (1991) Respiration and nitrogen metabolism of Atlantic halibut eggs (Hippoglossus hippoglossus L.). Mar Biol 108:11–19

    Google Scholar 

  • Forstner H, Gnaiger E (1983) Calculation of equilibrium oxygen concentration. In: Gnaiger E, Forstner H (eds) Polarographic oxygen sensors. Springer-Verlag, Berlin, pp 321–333

    Google Scholar 

  • Giguère LA, Cote B, St-Pierre J-F (1988) Metabolic rates scale isometrically in larval fishes. Mar Ecol Prog Ser 50:13–19

    Google Scholar 

  • Gnaiger E (1983) The twin-flow microrespirometer and simulataneous calorimetry. In: Gnaiger E, Forstner H (eds) Polarographic oxygen sensors. Springer-Verlag, Berlin, pp 134–166

    Google Scholar 

  • Gnaiger E, Kemp RB (1990) Anaerobic metabolism in aerobic mammalian cells: information from the ratio of calorimetric heat flux and respirometric oxygen flux. Biochim Biophys Acta 1016: 328–332

    Google Scholar 

  • Gnaiger E, Lackner R, Ortner M, Putzer V, Kaufmann R (1981) Physiological and biochemical parameters in anoxic and aerobic metabolism of embryonic salmonids, Salvelinus alpinus. Eur J appl Physiol (Suppl) 391:R57 (abstract)

    Google Scholar 

  • Gnaiger E, Shick JM, Widdows J (1989) Metabolic microcalorimetry and respirometry of aquatic animals. In: Bridges CR, Butler PJ (eds) Techniques in comparative respiratory physiology: an experimental approach. Cambridge University Press, Cambridge, pp 113–135

    Google Scholar 

  • Green EJ, Carritt DE (1967) New tables for oxygen saturation of seawater. J mar Res 25:140–147

    Google Scholar 

  • Heming TA, Buddington RK (1988) Yolk absorption in embryonic and larval fishes. In: Hoar WS, Randall DJ (eds) Fish physiology, XI. The physiology of developing fish. Part A. Eggs and larvae. Academic Press, London, pp 407–446

    Google Scholar 

  • Hishida TO, Nakano E (1954) Respiratory metabolism during fish development. Embryologia 2:67–70

    Google Scholar 

  • Hochachka PW, Somero GN (1984) Biochemical adaption. Princetown University Press, Princetown, New Jersey

    Google Scholar 

  • Hochachka PW, Fields J, Mustafa T (1973) Animal life without oxygen: basic biochemical mechanisms. Am Zool 13:543–555

    Google Scholar 

  • Houde ED, Schekter RC (1983) Oxygen uptake and comparative energetics among eggs and larvae of three subtropical marine fishes. Mar Biol 722:283–293

    Google Scholar 

  • Johnston IA (1975) Anaerobic metabolism in the carp (Carassius auratus L.). Comp Biochem Physiol 51B:235–241

    Google Scholar 

  • Jones A (1972) Studies on egg development and larval rearing of turbot, Scophthalmus maximus L., and brill, Scophthalmus rhombus L., in the laboratory. J Mar biol Ass UK 52:965–986

    Google Scholar 

  • Kamler E (1976) Variability of respiration and body composition during early developmental stages of carp. Polskie Archwm Hydrobiol 21:481–502

    Google Scholar 

  • Livingstone DR (1983) Invertebrate and vertebrate pathways of anaerobic metabolism: evolutionary considerations. J geol Soc Lond 140:27–37

    Google Scholar 

  • Lowry OH, Passoneau JV (1972) A flexible system of enzymic analysis. Academic Press, London

    Google Scholar 

  • Meling M (1993) Vektavhengig metabolsk rate hos larver av marin fish, Atlantisk kveite (Hippoglossus hippoglossus) og torsk (Gadus morhua). Universitetet i Bergen, Cand Scient, Bergen, Norway

    Google Scholar 

  • Milmar LS, Yurovitzky YuG (1967) The control of glycolysis in early embryogenesis. Biochem Biophys Acta 148:362–371

    Google Scholar 

  • Milman LS, Yurovitzky YuG (1973) Regulation of glycolysis in the early development of fish embryos. Karger, Basel

    Google Scholar 

  • Moroz IYe, Luzhin BP (1976) Dynamics of metabolism in the embryonic and early post-embryonic development of the carp Cyprinus carpio. J Ichthyol 16:964–970

    Google Scholar 

  • Nakano E (1953) Respiration during maturation and at fertilization of fish egg. Embryologia 2:21–31

    Google Scholar 

  • Neyfakh AA, Abravamova NB (1974) Biochemical embryology of fishes. In: Florkin M, Scheer BT (eds) Chemical zoology, VIII. Academic Press, London, pp 261–286

    Google Scholar 

  • Planas M, Labarta U, Fermandez-Reirez MJ, Ferreiro MJ, Munilla R, Garrido JL (1993) Chemical changes during development in turbot (Scophthalmus maximus) eggs and larvae. In: Walther BT, Fyhn HJ (eds) Physiological and biochemical aspects of fish development. University of Bergen, Bergen, Norway, pp 269–278

    Google Scholar 

  • Quantz G (1985) Use of endogenous energy sources by larval turbot (Scophthalmus maximus L.). Trans Am Fish Soc 114:558–563

    Google Scholar 

  • Rønnestad I, Fyhn HJ (1993) Metabolic aspects of free amino acids in developing marine fish eggs and larvae. Rev Fisheries Sci 1:239–259

    Google Scholar 

  • Rønnestad I, Fyhn HJ, Gravningen K (1992a) The importance of free amino acids to the energy metabolism of eggs and larvae of turbot (Scophthalmus maximus). Mar Biol 114:517–525

    Google Scholar 

  • Rønnestad I, Finn RN, Groot E, Fyhn HJ (1992b) Utilization of free amino acids related to energy metabolism of developing eggs and larvae of lemon sole Microstomus kitt reared in the laboratory. Mar Ecol Prog Ser 88:195–205

    Google Scholar 

  • Rønnestad I, Koven W, Tandler A, Harel M, Fyhn HJ (1994) Energy metabolism during development of eggs and larvae of gilthead sea bream (Sparus aurata). Mar Biol 120:187–196

    Google Scholar 

  • Santos EA, Vinagre AS (1991) Carbohydrate metabolism during embryonic and larval development of Odonthestes humensis (De Buen, 1953) (Pisces Atherinidae). J Fish Biol 39:239–244

    Google Scholar 

  • Serigstad B (1987) Oxygen uptake of developing fish eggs and larvae. Sarsia 72:369–371

    Google Scholar 

  • Shoubridge EA, Hochachka PW (1981) The origin and significance of metabolic carbon dioxide production in the anoxic goldfish. Molec Phys 1:315–338

    Google Scholar 

  • Skiftesvik AB (1992) Changes in behaviour at onset of exogeneous feeding in marine fish larvae. Can J Fish aquat Sciences 49: 1570–1572

    Google Scholar 

  • Sokal RR, Rohlf FJ (1981) Biometry: the principles and practices of statistics in biological research, 2nd edn. WH Freeman & Co., New York

    Google Scholar 

  • Terner C (1968a) Studies of metabolism in embryonic development — I. The oxidative metabolism of unfertilized and embryonated eggs of the rainbow trout. Comp Biochem Physiol 24:933–940

    Google Scholar 

  • Terner C (1968b) Studies of metabolism in embryonic development III. Glycogenolysis and gluconeogenesis in trout embryos. Comp Biochem Physiol 25:989–1003

    Google Scholar 

  • Terner C (1979) Metabolism and energy conversion during early development. In: Hoar WS, Randall DJ, Brett JR (eds) Fish physiology, Vol. VIII. Bioenergetics and growth. Academic Press, London, pp 261–278

    Google Scholar 

  • Van den Thillart G, Van Waarde A (1985) Teleosts in hypoxia: aspects of anaerobic metabolism. Molec Phys 8:393–409

    Google Scholar 

  • Van den Thillart G, Kesbeke F, Van Waarde A (1976) Influence of anoxia on the energy metabolism of goldfish Carassius auratus (L.). Comp Biochem Physiol 55A:329–336

    Google Scholar 

  • Van den Thillart G, Kesbeke F, Van Waarde A (1980) Anaerobic energy-metabolism of goldfish Carassius auratus (L.). J Comp Physiol 136:45–52

    Google Scholar 

  • Van Waarde A (1988) Biochemistry of non-protein nitrogenous compounds in fish including the use of amino acids for anaerobic energy production. Comp Biochem Physiol 91B:207–228

    Google Scholar 

  • Vetter RD, Hodson RE, Arnold C (1983) Energy metabolism in a rapidly developing marine fish egg, the red drum (Sciaenops ocellata). Can J Fish aquat Sciences 40:627–634

    Google Scholar 

  • Wang WX, Widdows J (1991) Physiological responses of mussel larvae Mytilus edulis to environmental hypoxia and anoxia. Mar Ecol Prog Ser 70:223–236

    Google Scholar 

  • Widdows J (1987) Application of calorimetric methods in ecological studies. In: James AM (ed) Thermal and energetic studies of cellular biological systems. Wright, Bristol, pp 182–215

    Google Scholar 

  • Yurovitzky YuG, Milman LS (1971) Coordinated changes in activity of the enzymes of glycolytic chain in the course of loach oogenesis. Biokhimiya. 26:1130–1136 (in Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by T. M. Fenchel, Helsingør

Rights and permissions

Reprints and permissions

About this article

Cite this article

Finn, R.N., Widdows, J. & Fyhn, H.J. Calorespirometry of developing embryos and yolk-sac larvae of turbot (Scophthalmus maximus). Marine Biology 122, 157–163 (1995). https://doi.org/10.1007/BF00349289

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00349289

Keywords

Navigation