Skip to main content
Log in

Icy heritage: ecological evolution of the postglacial Baltic Sea reflected in the allozymes of a living fossil, the priapulid Halicryptus spinulosus

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Genetic variation of 16 allozyme loci in 397 Halicryptus spinulosus (Priapulida) revealed overall polymorphism of P=0.438 and Hardy-Weinberg expectations for heterozygosity of H e=0.060 for Baltic Sea stocks, H e=0.143 for the White Sea and H e=0.121 for Iceland. Maximal unbiased standard distances of D=0.0693 separated Baltic and White Sea populations. Nordic and Baltic populations could be distinguished by allozymes, but Baltic subsamples proved cohesive. Gene flow amounted to effective exchange values per generation of N m=2.94 over 650 km of continuous habitat, N m=10.65 over 175 km, and N m=13.85 over 20 km. Gene flow started to decrease with geographic distance beyond a dispersal threshold of 20 km, but hierarchical G ST-statistics indicated light isolation by distance beyond a minimum of 8 km. Gene flow is high for a benthic worm assumed to lack dispersal by pelagic larva, a paradox which cannot be resolved now. Baltic populations are characterized by lower heterozygosity than Nordic stocks. In the Baltic Basin, temporally continuous brackish-water conditions have only existed for the past 7000 years. The two possible colonization routes of H. spinulosus to the geologically young Baltic Sea imply genetic drift, whether by founder effect (sweepstake colonization from Iceland) or by refugial bottlenecking during the Ancylus phase of the Baltic Basin after a direct connection to the White Sea had been sequestered. Continued genetic drift is emphasized by lower heterozygosity in the ecologically unstable Belt Sea compared to the central Baltic. Allozymes falsify the reduced-mutability hypothesis to explain bradytelic evolution of Priapulida. Regional genetic homogeneity, ample polymorphism, and preference for anoxic black mud qualify H. spinulosus populations as indicators of microevolutionary responses to water circulation regimes or pollution in the Baltic Sea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aebersold PB, Winans GA, Teel DJ, Milner GB, Utter FM (1987) Manual for starch gel: a method for detection of genetic variation. NOAA tech Rep US Dep Commerce

  • Arntz WE (1971) Biomasse und Produktion des Makrobenthos in den tiefen Teilen der Kieler Bucht im Jahr 1966. Kieler Meeresforsch 27: 36–72

    Google Scholar 

  • Avise JC (1994) Molecular markers, natural history and evolution. Chapman & Hall, New York

    Google Scholar 

  • Bagge P, Jumppanen K, Leppäkoski E, Tulkki P (1965) Bottom fauna of the Finnish southwestern archipelago. Annls zool fenn 2: 38–52

    Google Scholar 

  • Battaglia B, Bisol PM, Fava G (1978) Genetic variability in relation to the environment in some invertebrates. In: Battaglia B, Beardmore JA (eds) Marine organisms. Genetics, ecology, evolution. Plenum Press, New York, pp 53–70

    Google Scholar 

  • Bauer K, Schreiber A (1995) Primate phylogeny from a human perspective. Fischer-Verlag, Stuttgart

    Google Scholar 

  • Briscoe DA, Tait NN (1995) Allozyme evidence for extensive and ancient radiations in Australian onychophora. Zool J Linn Soc 114: 91–102

    Google Scholar 

  • Bullini L, Nascetti G, Ciafre S, Rumore F, Biocca E, Montalenti SG, Rita G (1978) Ricerche cariologiche ed elettroforetiche su Parascaris univalens e Parascaris equorum. Accademia Nazionale dei Lincei (Roma)/Classe di szienze fisiche, matematiche e naturali: Rendiconti Ser 8 (65): 151–159

    Google Scholar 

  • Bulnheim HP, Scholl A (1981) Genetic variation between geographic populations of the amphipods Gammarus zaddachi and G. salinus. Mar Biol 64: 105–115

    Google Scholar 

  • Chakraborty R, Haag M, Ryman N, Stahl G (1982) Hierarchical gene diversity analysis and its application to brown trout population data. Hereditas 97: 17–21

    Google Scholar 

  • Chakraborty R, Leimar O (1987) Genetic variation within a subdivided population. In: Ryman NF (eds) Population genetics and fisheries management. University of Washington Press, Seattle, pp 89–120

    Google Scholar 

  • Chen J, Bergström J, Lindström M, Hou X (1991) Fossilized softbodied fauna. Research & Exploration (National Geographic Society). 7: 8–19

    Google Scholar 

  • Conway Morris C (1977) Fossil priapulid worms. The Palaeontol Association, London, Spec Pap Palaeontology 20

    Google Scholar 

  • Crisp DJ, Ekaratne K (1984) Polymorphism in Pomatoceros. Zool J Linn Soc 80: 157–175

    Google Scholar 

  • Dietrich G, Köster R (1974) Geschichte der Ostsee. In: Magaard L, Rheinheimer G (eds) Meereskunde der Ostsee. Springer-Verlag, Berlin, pp 5–10

    Google Scholar 

  • Ekman S (1935) Tiergeographie des Meeres. Akademische Verlagsgesellschaft, Leipzig

    Google Scholar 

  • Ekman S (1940) Biologische Geschichte der Nord- und Ostsee. In: Grimpe G (ed) Die Tierwelt der Nord-und Ostsee. Vol. 1b Akademische Verlagsgesellschaft, Leipzig, pp 1–40

    Google Scholar 

  • Eldredge N, Stanley SM (1984) Living fossils. Springer, New York

    Google Scholar 

  • Gooch JL (1975) Mechanisms of evolution and population genetics. In: Kinne O (ed) Marine ecology. Comprehensive, integrated treatise on life in oceans and coastal waters. Vol. II, Part 1 John Wiley, London, pp 349–409

    Google Scholar 

  • Gyllensten U, Ryman N (1982) Biochemical genetic variation and population structure of fourhorn Sculpin (Myoxocephalus quadricornis; Cottidae) in Scandinavia. Hereditas 108: 179–185

    Google Scholar 

  • Harris H, Hopkinson DA (1976) Handbook of enzyme electrophoresis in human genetics. North Holland Publishing Company, Amsterdam

    Google Scholar 

  • Hilbish TJ, Deaton LE, Koehn RK (1982) Effect of an allozyme polymorphism on regulation of cell volume. Nature, Lond 298: 688–689

    Google Scholar 

  • Holmquist C (1966) Die sogenannten marin-glazialen Relikte nach neucren Gesichtspunkten. Arch Hydrobiol 62: 285–326

    Google Scholar 

  • Hupt A (1993) Effects of contrasting patterns of larval dispersal on the genetic connectedness of local populations of two intertidal starfish, Patiriella calcar and P. exigua. Mar Ecol Prog Ser 92: 179–186

    Google Scholar 

  • Hurst CD, Skibinski DOF (1995) Comparison of allozyme and mitochondrial DNA spatial differentiation in the limpet Patella vulgata. Mar Biol 122: 257–263

    Google Scholar 

  • Janson K (1987) Allozyme and shell variation in two marine snails (Littorina, Prosobranchia) with different dispersal abilities. Biol J Linn Soc 30: 245–256

    Google Scholar 

  • Janson K, Ward RD (1984) Microgeographic variation in allozyme and shell characters in Littorina saxatilis. Biol J Linn Soc 22: 289–307

    Google Scholar 

  • Johnson MS, Black R (1982) Chaotic patchiness in an intertidal limpet, Siphonaria sp. Mar Biol 70: 157–164

    Google Scholar 

  • Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Google Scholar 

  • Knight AJ, Hughes RN, Ward RD (1987) A striking example of the founder effect in the molluse Littorina saxatilis. Biol J Linn Soc 32: 417–426

    Google Scholar 

  • Knowlton N, Jackson JBC (1993) Inbreeding and outbreeding in marine invertebrates. In: Thornhill NW (ed) The natural history of inbreeding and outbreeding. University of Chicago Press, Chicago, pp 200–249

    Google Scholar 

  • Kühlmorgen-Hille G (1963) Quantitative Untersuchungen der Bodenfauna in der Kieler Bucht und ihre jahreszeitlichen Veränderungen. Kieler Meeresforsch 19: 42–66

    Google Scholar 

  • Kühlmorgen-Hille G (1965) Qualitative und quantitative Veränderungen der Bodenfauna in der Bucht in den Jahren 1953–1965. Kieler Meeresforsch 21: 167–191

    Google Scholar 

  • Kullenberg G (1983) The Baltic Sea. In: Ketchum BH (ed) Ecosystems of the world. Vol. 26. Estuaries and enclosed seas. Elsevier Science Publishers Co., Amsterdam, pp 309–335

    Google Scholar 

  • Laakso M (1965) The bottom fauna in the surroundings of Helsinki. Annls zool fenn 2: 18–37

    Google Scholar 

  • Land J van der (1970) Systematics, zoogeography, and ecology of the Priapulida. EJ Brill, Leiden

    Google Scholar 

  • Land J van der, Norrevang A (1985) Affinities and intraphyletic relationships of the Priapulida. In: Morris S, George JD, Gibson R, Platt HM (eds) The origins and relationships of lower invertebrates. The Systematics Assoc Spec Vol. 28. Clarendon Press, Oxford, pp 261–273

    Google Scholar 

  • Larson A (1989) The relationship of speciation and morphological evelution. In: Otte D, Endler JA (eds) Speciation and its consequences. Sinauer, Sunderland, pp 579–598

    Google Scholar 

  • Lessios HA (1992) Testing electrophoretic data for agreement with Hardy-Weinberg expectations. Mar Biol 112: 517–523

    Google Scholar 

  • Manchenko GP, Balakirev ES (1982) Level of genetic variability in marine invertebrates. In: Kafanov AI (ed) Biology of shelf zones of the world oceans. Vol. 2. Vladivostok, pp 91–93 (in Russian, cited after Nevo et al. 1984).

  • Nascetti G, Grappelli C, Bullini L, Montalenti SG (1979) Ricerche sul differenziamento genetico di Ascaris lumbricoides e Ascaris suum. Acad Naz Lincei Ser 8 (67): 457–465

    Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc natn Acad Sci 70: 3321–3323

    Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Nei M, Chesser RK (1983) Estimation of fixation indices and genetic diversities. Ann hum Genet 47: 253–259

    Google Scholar 

  • Nevo E, Beiles A, Ben-Shlomo R (1984) The evolutionary significance of genetic diversity: demographic and life history correlations. In: Mani GS (ed) Evolutionary dynamics of genetic diversity. Springer-Verlag, Berlin, pp 13–213

    Google Scholar 

  • Oeschger R (1987) Vergleichende Untersuchungen zur biotopbedingten Langzeit-Anaerobiose und Schwefelwasserstoff-Resistenz bei einigen marinen Wirbellosen aus der Ostsee. PhD Thesis, Universität Kiel, Kiel

    Google Scholar 

  • Oeschger R, Theede H (1986) Untersuchungen zur Langzeit-Anaerobiose bei Halicryptus spinulosus (Priapulida). Verh dt zool Ges 79: p 401

    Google Scholar 

  • Oeschger R, Theede H (1988) Use of biochemical features of macrobenthic species as indicators of long-term oxygen deficiency. Kieler Meeresforsch, Sonderheft 6: 99–110

    Google Scholar 

  • Ovenden JR, Brashier DJ, White RWG (1992) Mitochondrial DNA analyses of the red rock lobster Jasus edwardsii support an apparent absence of population subdivision throughout Australasia. Mar Biol 112: 319–326

    Google Scholar 

  • Palumbi SR (1995) Using genetics as an indirect estimator of larval dispersal. In: McEdward L (ed) Marine invertebrate larvae. CRC Press, Boca Raton, pp 369–387

    Google Scholar 

  • Palumbi SR, Wilson AC (1990) Mitochondrial DNA diversity in the sea urchins Strongylocentrotus purpuratus and S. droebachiensis. Evolution 44: 403–415

    Google Scholar 

  • Purasjoki KJ (1944) Beiträge zur Kenntnis der Entwicklung und Ökologie der Halicryptus spinulosus-Larve. Annales Zoologici Societatis Zoologicae Botanicae Fennicae Vanamo 9(6): 1–14

    Google Scholar 

  • Remane A (1940) Einführung in die zoologische Ökologie der Nordund Ostsee. In: Grimpe G (ed) Die Tierwelt der Nord- und Ostsee. Vol. 1a. Akademische Verlagsgesellschaft, Leipzig, pp 1–238

    Google Scholar 

  • Remane A, Schlieper C (1971) Biology of brackish waters. E Schweizerbarth, Stuttgart

    Google Scholar 

  • Rogers AD, Thorpe JP, Gibson R (1995) Genetic evidence for the occurrence of a cryptic species with littoral nemerteans Lineus ruber and L. viridis (Nemertea: Anopla). Mar Biol 122: 305–316

    Google Scholar 

  • Särkkä J (1969) The bottom fauna at the mouth of the river Kokemäenjoki, southwestern Finland. Annls zool fenn 6: 275–288

    Google Scholar 

  • Sauramo M (1958) Die Geschichte der Ostsee. Ann Acad scient Fenn (Ser A 3): 1–522

  • Scheltema RS (1986) On dispersal and planktonic larvae of benthic invertebrates: an ecclectic overview and summary of problems. Bull mar Sci 39: 290–322

    Google Scholar 

  • Schreiber A, Storch V (1992) Free cells and blood proteins in Priapulus caudatus. Sarsia 76: 261–266

    Google Scholar 

  • Schreiber A, Storch V, Powilleit M, Higgins RP (1991) The blood of Halicryptus spinulosus (Priapulida). Can J Zool 69: 201–207

    Google Scholar 

  • Schreiber A, Svavarsson J, Storch V (1992) Blood proteins in bipolar Priapulida. Polar Biol 12: 667–672

    Google Scholar 

  • Schulz S (1969) Benthos und Sediment in der Mecklenburger Bucht. Beitr Meeresk 24/25: 15–55

    Google Scholar 

  • Segerstrale SG (1933) Studien über die Bodentierwelt in südfinnländischen Küstengewässern. Commentat biol 4 (8): 1–62

    Google Scholar 

  • Segerstrale SG (1957) On the immigration of the glacial relicts of northern Europe, with remarks on their prehistory. Commentat biol 16: 1–117

    Google Scholar 

  • Selander RK, Lewontin RC, Johnson WE (1970) Genetic variation in the horseshoe crab (Limulus polyphemus), a phylogenetic “relic”. Evolution 24: 402–414

    Google Scholar 

  • Shaklee JB (1984) Genetic variation and population strucure in the damselfish, Stegastes fasciolatus, throughout the Hawaiian archipelago. Copeia 1984: 629–640

    Google Scholar 

  • Simpson GG (1947) Tempo and mode in evolution. Columbia University Press. New York

    Google Scholar 

  • Slatkin M (1985) Rare alleles as indicators of gene flow. Evolution 39: 53–65

    Google Scholar 

  • Storch V (1991) Priapulida. In: Harrison FH (ed) Microscopic anatomy of invertebrates. Vol. 4. Wiley-Liss, New York, pp 333–350

    Google Scholar 

  • Storch V, Higgins RP (1991) Scanning and transmission electron microscopic observations on the larva of Halicryptus spinulosus. J Morph 210: 175–194

    Google Scholar 

  • Theede H (1974) Die Tierwelt: Ökologie. In: Magaard L, Rheinheimer G (eds) Meereskunde der Ostsee. Springer-Verlag, Berlin, pp 171–188

    Google Scholar 

  • Thienemann A (1950) Verbreitungsgeschichte der Süsswassertierwelt Europas. E Schweizerbarth, Stuttgart

    Google Scholar 

  • Tulkki P (1965) Disappearance of the benthic fauna from the basin of Bornholm due to oxygen. Cah Biol mar 6: 455–463

    Google Scholar 

  • von Oertzen JA (1988) Das Leben im Brackwasser—Konfrontation oder Opportunismus? Biol Rdsch 26: 197–212

    Google Scholar 

  • Wake DB, Roth G, Wake MH (1983) On the problem of stasis in organismal evolution. J theor Biol 1010: 211–224

    Google Scholar 

  • Ward RD, Skibinski DOF, Woodwark M (1992) Protein heterozygosity, protein structure, and differentiation. Evolutionary Biol 26: 73–159

    Google Scholar 

  • Weigelt M (1991) The polychaete Nephthys spp. and the priapulid Halicryptus spinulosus von Siebold in Kiel Bay (western Baltic). Meeresforsch, Rep mar Res (Ber dt wiss Kommn Meeresforsch) 33: 297–311

    Google Scholar 

  • Weigelt M, Rumohr H (1986) Effects of wide-ranging oxygen depletion on benthic fauna and demersal fish in Kiel Bay 1981–1983. Kieler Meeresforsch 31: 124–136

    Google Scholar 

  • Winans GA (1980) Geographic variation in the milkfish Chanos chanos. I. Biochemical evidence. Evolution 34: 558–574

    Google Scholar 

  • Wright S (1951) The genetical structure of populations. Ann Eugen 15: 323–354

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by: O. Kinne, Oldendorf/Luhe

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schreiber, A., Eisinger, M., Rumohr, H. et al. Icy heritage: ecological evolution of the postglacial Baltic Sea reflected in the allozymes of a living fossil, the priapulid Halicryptus spinulosus . Marine Biology 125, 671–685 (1996). https://doi.org/10.1007/BF00349249

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00349249

Keywords

Navigation