Skip to main content
Log in

Mating systems in the sea anemone genus Epiactis

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Four morphologically similar species in the sea anemone genus Epiactis exhibit overlapping distributions on the Pacific coast of North America; E. prolifera, E. lisbethae, E. ritteri and E. fernaldi. All brood their offspring up to the juvenile stage, but each has a different combination of internal versus external brooding and hermaphroditism versus gonochory (separate sexes). Specimens were collected from sites ranging from British Columbia to southern California between December 1988 and July 1992. Mating systems were inferred from genetic comparisons of mothers and offspring histological analyses of sex expression and observations on brooding and spawning behavior. Allozyme and multilocus DNA fingerprint analyses of the gynodioecious hermaphrodite E. prolifera showed that offspring were all identical to their mothers, a result consistent with either asexual reproduction, self-fertilization or extreme biparental inbreeding. In the gonochore E. lisbethae, mothers and offspring were also electrophoretically identical, but variation in DNA fingerprints indicated cross-fertilization. Similar DNA fingerprint differences between mother and offspring in the gonochore E. ritteri implied that cross-fertilization also occurs in this species. No mother-offspring comparisons were performed on E. fernaldi, as this species was not observed brooding offspring during this study. Although incomplete, the results of this study increase our knowledge of the very unusual combination of reproductive modes in the genus Epiactis, and argue for further investigations of the evolution and genetic consequences of mating systems in these species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aebersold PB, Winans GA, Teel DJ, Milner GB, Utter FM (1987) Manual for starch gel electrophoresis: a method for the detection of genetic variation. NOAA natn mar Fish Serv tech Rep US Dep Commerce 61: 1–9

    Google Scholar 

  • Ayala FJ, Hedgecock D, Zumwalt GS, Valentine JW (1973) Genetic variation in Tridacna maxima, an ecological analog of some unsuccessful evolutionary lineages. Evolution, Lawrence, Kansas 27: 177–191

    Google Scholar 

  • Ayre DJ (1984) Effects of environment and population density on the sea anemone Actinia tenebrosa. Aust J mar Freshwat Res 35: 735–746

    Google Scholar 

  • Ayre DJ (1988) Evidence for genetic determination of sex in Actinia tenebrosa. J exp mar Biol Ecol 116: 23–34

    Google Scholar 

  • Black R, Johnson MS (1979) Asexual viviparity and population genetics of Actinia tenebrosa. Mar Biol 53: 27–31

    Google Scholar 

  • Bucklin A, Hedgecock D, Hand C (1984) Genetic evidence of self-fertilization in the sea anemone Epiactis prolifera. Mar Biol 84: 175–182

    Google Scholar 

  • Burke T (1989) DNA fingerprinting and other methods for the study of mating success. Trends Ecol Evol 4: 139–144

    Google Scholar 

  • Burke T, Bruford MW (1987) DNA fingerprinting in birds. Nature, Lond 327: 149–152

    Google Scholar 

  • Carter MA, Thorp CH (1979) The reproduction of Actinia equina var. mesembryanthemum. J mar biol Ass UK 59: 989–1001

    Google Scholar 

  • Chia F-S (1976) Sea anemone reproduction: patterns and adaptive radiation. In: Mackie GO (ed) Coelenterate ecology and behavior. Plenum Press, New York, pp 261–270

    Google Scholar 

  • Chia F-S, Rostron MA (1970) Some aspects of the reproductive biology of Actinia equina (Cnidaria: Anthozoa). J mar biol Ass UK 50: 253–264

    Google Scholar 

  • Coffroth MA, Lasker HR, Diamond ME, Bruenn JA, Bermingham E (1992) DNA fingerprints of a gorgonian coral: a method for detecting clonal structure in vegetative species. Mar Biol 114: 317–325

    Google Scholar 

  • Dunn DF (1972) The natural history of the sea anemone Epiactis prolifera Verrill, 1869, with special reference to its reproductive biology, Ph.D. dissertation. University of California, Berkeley

    Google Scholar 

  • Dunn DF (1975a) Gynodioecy in an animal. Nature, Lond 253: 528–529

    Google Scholar 

  • Dunn DF (1975b) Reproduction of the externally brooding sea anemone Epiactis prolifera Verrill, 1869. Biol Bull mar biol Lab, Woods Hole 148: 199–218

    Google Scholar 

  • Dunn DF (1977a) Dynamics of external brooding in the sea anemone Epiactis prolifera. Mar Biol 39: 41–49

    Google Scholar 

  • Dunn DF (1977b) Variability of Epiactis prolifera (Coelenterata: Actiniaria) in the intertidal zone near Bodega Bay, California, J nat Hist 11: 457–463

    Google Scholar 

  • Edmands S (1994) Genetic and evolutionary consequences various reproductive strategies in the sea anemone genus Epiactis. Ph.D. dissertation. University of California, Santa Cruz

    Google Scholar 

  • Ennos RA, Clegg MT (1982) Effects of population substructuring on estimates of outcrossing rate in plant populations. Heredity, Lond 48: 283–292

    Google Scholar 

  • Fautin DG, Chia F-S (1986) Revision of the sea anemone genus Epiactis (Coelenterata: Actiniaria) on the Pacific coast of North America, with descriptions of two new brooding species. Can J Zool 64: 1665–1674

    Google Scholar 

  • Franzen A (1970) Phylogenetic aspects of the morphology of spermatazoa and spermiogenesis. In: Bacetti B (ed) Comparative spermatology. Academic Press, New York, pp 29–46

    Google Scholar 

  • Gashout SE, Ormond RFG (1979) Evidence for parthenogenetic reproduction in the sea anemone Actinia equina L. J mar biol Ass UK 59: 975–987

    Google Scholar 

  • Hand C, Dunn DF (1974) Redescription and range extension of the sea anemone Cnidopus ritteri (Torrey) (Coelenterata: Actiniaria). Wasmann J Biol 32: 187–194

    Google Scholar 

  • Harriot VJ (1983a) Reproductive ecology of four scleractinian species at Lizard Island, Great Barrier Reef. Coral Reefs 2: 9–18

    Google Scholar 

  • Harriot VJ (1983b) Reproductive seasonality, settlement and post-settlement mortality of Pocillopora damicornis (Linnaeus), at Lizard Island, Great Barrier Reef. Coral Reefs 2: 151–157

    Google Scholar 

  • Harris H, Hopkinson DA (1976) Handbook of electrophoresis in human genetics. American Elsevir, New York

    Google Scholar 

  • Harrison PL (1985) Sexual characteristics of scleractinian corals: systematics and evolutionary implications. Proc 5th int coral Reef Congr 4: 337–342 [Gabrié C et al. (eds) Antenne Museum-EPHE, Moorea, French Polynesia]

    Google Scholar 

  • Hoffmann RJ (1986) Variation in contributions of asexual reproduction to the genetic structure of populations of the sea anemone Metridium senile. Evolution, Lawrence, Kansas 42: 357–365

    Google Scholar 

  • Humason GL (1967) Animal tissue techniques. W.H. Freeman, San Francisco

    Google Scholar 

  • Jeffreys AJ, Morton DB (1987) DNA fingerprints of dogs and cats. Anim Genet 18: 1–15

    Google Scholar 

  • Jeffreys AJ, Wilson V, Thein SL (1985a) Hypervariable ‘minisatellite’ regions in human DNA. Nature, Lond 314: 67–73

    Google Scholar 

  • Jeffreys AJ, Wilson V, Thein SL (1985b) Individual-specific ‘fingerprints’ of human DNA. Nature, Lond 316: 76–79

    Google Scholar 

  • Larkman AV, Carter MA (1980) The spermatozoon of Actinia equina L. var. mesembryanthemum. J mar biol Ass UK 60: 193–204

    Google Scholar 

  • Levin DA (1978) Genetic variation in annual Phlox: self compatible versus self incompatible species. Evolution, Lawrence, Kansas 32: 245–263

    Google Scholar 

  • Lewis D, Crowe LK (1955) The genetics and evolution of gynodioecy. Evolution, Lawrence, Kansas 10: 115–125

    Google Scholar 

  • Lynch M (1990) The similarity index and DNA fingerprinting. Molec Biol Evolut 7: 478–484

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor, New York

  • McGrath D, O'Foighil D (1986) Population dynamics and reproduction of hermaphroditic Lasaea rubra (Montagu), (Bivalvia: Galeommatacea). Ophelia 25: 209–219

    Google Scholar 

  • Murphy RW, Sites JW Jr, Buth DG, Haufler CH (1990) In: Hillis DM, Moritz C (eds) Molecular systematics, Sinauer, Sunderland, Mass, pp 45–126

    Google Scholar 

  • Orr J, Thorpe JP, Carter MA (1982) Biochemical genetic confirmation of the asexual reproduction of brooded offspring in the sea anemone Actinia equina. Mar Ecol Prog Ser 7: 227–229

    Google Scholar 

  • Ottaway JR (1979) Population ecology of the intertidal anemone Actinia tenebrosa. II. Geographical distribution, synonomy, reproductive cycle and fecundity. Aust J Zool 27: 273–290

    Google Scholar 

  • Ottaway JR, Kirby GC (1975) Genetic relationships between brooding and brooded Actinia tenebrosa. Nature, Lond 255: 221–223

    Google Scholar 

  • Philander SG (1992) El Niño. Oceanus 35(2): 56–61

    Google Scholar 

  • Rossi L (1975) Sexual races in Cereus pedunculatus (Boad.) Pubbl Staz zool Napoli (Suppl): 462–470

  • Shaklee JB, Allendorf FW, Morizot DC, Whitt GS (1990) Gene nomenclature for protein-coding loci in fish. Trans Am Fish Soc 119: 2–15

    Google Scholar 

  • Shaw CR, Prasad R (1970) Starch gel electrophoresis of enzymes: a compilation of recipes. Biochem Genet 4: 297–320

    Google Scholar 

  • Shick JM, Lamb AN (1977) Asexual reproduction and genetic population structure in the colonizing sea anemone Haliplanella luciae. Biol Bull mar biol Lab, Woods Hole 153: 604–617

    Google Scholar 

  • Stoddart JA (1983) Asexual production of planulae in the coral Pocillopora damicornia. Mar Biol 76: 279–284

    Google Scholar 

  • Stoddart JA, Black R (1985) Cycles of gametogenesis and planulation in the coral Pocillopora damicornis. Mar Ecol Prog Ser 23: 153–164

    Google Scholar 

  • Tracey ML, Nelson K, Hedgecock D, Shleser RA, Pressick ML (1975) Biochemical genetics of lobsters: genetic variation and the structure of the American lobster (Homarus americanus) population. J Fish Res Bd Can 32: 2091–2101

    Google Scholar 

  • Vassart G, Georges M, Monsieur R, Brocas H, Lequarre AS, Cristophe D (1987) A sequence in M13 phage detects hypervariable minisatellites in human and animal DNA. Science, NY 239: 683–684

    Google Scholar 

  • Ward RD, Beardmore JA (1977) Protein variation in the plaice (Pleuronectes platissa). Genet Res 30: 45–62

    Google Scholar 

  • Wetton JH, Carter RE, Parkin DT, Walters D (1987) Demographic study of a wild house sparrow population by DNA fingerprinting. Nature, Lond 327: 147–149

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by M.F. Strathmann, Friday Harbor

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edmands, S. Mating systems in the sea anemone genus Epiactis . Marine Biology 123, 723–733 (1995). https://doi.org/10.1007/BF00349115

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00349115

Keywords

Navigation