Skip to main content
Log in

The origin of nitrogen and phosphorus for growth of the marine angiosperm Thalassia testudinum

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

How are high rates of production by Thalassia testudinum König maintained in notably nutrient-poor tropical waters? Yield-nutrient supply correlations indicate that a singnificant proportion of the phosphorus, and virtually all nitrogen for leaf growth are taken-up from the sediments, and that growth is generally limited by availability of nitrogen. Considerations of supply and demand suggest that the sediments could not be a primary source of phosphate, but the sediments may act as a “storage bank” for phosphate taken up from the sea water by T. testudinum. It is believed that inorganic nitrogen in the root layer is derived from fixation of gaseous nitrogen by anaerobic bacteria. Maintenance of anaerobic conditions in the root layer appears to be essential for good growth of T. testudinum, and it is suggested that such conditions facilitate nitrogen fixation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Alexander, M.: Soil microbiology, 472 pp. New York: John Wiley 1961.

    Google Scholar 

  • Allison, L. E.: Organic carbon. In: Methods of soil analysis, pp 1367–1378. Ed. by C. A. Black et al. Madison, Wisconsin: American Society of Agronomy 1965.

    Google Scholar 

  • Barrow, N. J.: Studies on the adsorption of sulfate by soils. Soil Sci. 104, 342–349 (1967).

    Google Scholar 

  • Beers, J. R., D. M. Steven and J. B. Lewis: Primary productivity in the Caribbean Sea off Jamaica and the tropical north Atlantic off Barbados. Bull. mar. Sci. 18, 86–104 (1968).

    Google Scholar 

  • Berner, R. A.: Chemical diagenesis of some modern carbonate sediments. Am. J. Sci. 264, 1–36 (1966).

    Google Scholar 

  • Biddulph, O.: Translocation of inorganic solutes. In: Plant physiology, Vol. 2, pp 553–603. Ed. by F. C. Steward. New York: Academic Press 1959.

    Google Scholar 

  • Black, C. A.: Soil-plant relationships, 792 pp. New York: John Wiley 1968.

    Google Scholar 

  • Bremner, J. M.: Inorganic forms of nitrogen. In: Methods of soil analysis, pp 1179–1237. Ed. by C. A. Black et al. Madison, Wisconsin: American Society of Agronomy 1965.

    Google Scholar 

  • Brouzes, R., J. Lasik and R. Knowles: The effect of organic amendment, water content, and oxygen on the incorporation of 15N2 by some agricultural and forest soils. Can. J. Microbiol. 15, 899–905 (1969).

    Google Scholar 

  • Cole, C. V. and S. R. Olsen: Phosphorus solubility in calcaeous soils: II. Effects of exchangeable phosphorus and soil texture on phosphorus solubility. Proc. Soil. Sci. Soc. Am. 23, 119–121 (1959).

    Google Scholar 

  • — and C. O. Scott: The nature of phosphate sorption by calcium carbonate. Proc. Soil Sci. Soc. Am. 17, 352–356 (1953).

    Google Scholar 

  • Emery, K. O., R. E. Steverson and J. W. Hedgepeth: Estuaries and lagoons. In: Treatise on marine ecology and paleoecology. I. Ecology, pp 673–750. Ed. by J. W. Hedgepeth. Geol. Soc. Am 67 (1957).

  • Fried, M. and R. E. Shapiro: Phosphate supply pattern of various soils: Proc. Soil Sci. Soc. Am. 20, 471–475 (1956).

    Google Scholar 

  • Ginsburg, R. N.: Environmental relationships of grain size and constituent particles in some south Florida carbonate sediments. Bull. Am. Ass. Petrol. Geol. 40, 2348–2427 (1956).

    Google Scholar 

  • Gulbrandsen, R. A.: Physical and chemical factors in the formation of marine apatite. Foon. Geol. 64, 365–382 (1969).

    Google Scholar 

  • Hayes, F. R. and J. E. Phillips: Lake water and sediment IV. Radiophosphorus equilibrium with mud, plants and bacteria under oxidized and reduced conditions. Limnol. Oceanogr. 3, 459–475 (1958).

    Google Scholar 

  • Hsu, P. H.: Adsorption of phosphate by aluminum and iron in soils. Proc. Soil Sci. Soc. Am. 28, 474–478 (1964).

    Google Scholar 

  • Jensen, P. B.: Studies concerning the organic matter of the sea bottom. Rep. Dan. biol. Stn 22, 1–39 (1915).

    Google Scholar 

  • Johnson, R. G.: Salinity of interstitial water in a sandy beach. Limnol. Oceanogr. 12, 1–7 (1967).

    Google Scholar 

  • Kursanov, A. L.: Metabolism and the transport of organic substances in the phloem. Adv. bot. Res. 1, 209–278 (1963).

    Google Scholar 

  • Laing, H. E.: Respiration of the rhizomes of Nuphar advenum and other water plants. Am. J. Bot. 27, 574–581 (1940).

    Google Scholar 

  • McRoy, C. P. and R. J. Barsdate: Phosphate absorption in eelgrass. Limnol. Oceanogr. 15, 6–13 (1970).

    Google Scholar 

  • Murrmann, R. P. and M. Peech: Reaction products of applied phosphate in limed soils. Proc. Soil Sci. Soc. Am. 32, 493–496 (1968).

    Google Scholar 

  • —: Relative significance of labile and crystalline phosphate in soil. Soil Sci. 107, 249–255 (1969).

    Google Scholar 

  • Odum, E. P.: Fundamentals of ecology, 546 pp. Philadelphia: W. B. Saunders 1959.

    Google Scholar 

  • Olsen S. R. and L. A. Dean: Phosphorus. In: Methods of soil analysis, pp 1035–1049. Ed. by C. A. Black et al. Madison, Wisconsin: American Society of Agronomy 1965

    Google Scholar 

  • — and F. S. Watanbe: A method to determine a phosphorus adsorption maximum of soils as measured by the Langmuir isotherm. Proc. Soil Sci. Soc. Am. 21, 144–148 (1957).

    Google Scholar 

  • Patriquin, D. G.: Estimation of growth rate, production and age of the marine angiosperm Thalassia testdinum K. Caribb. J. Sci. 13 (1973) (In press).

  • Postgate, J. R.: Nitrogen fixation by sporulating sulphate-reducing bacteria including rumen strains. J. gen. Microbiol. 63, 137–139 (1970).

    Google Scholar 

  • Pravdić, V.: Surface charge characteristics of sea sediments. Limnol. Oceanogr. 15, 230–233 (1970).

    Google Scholar 

  • Rinaudo, G.: Fixation biologique de l'azote dans trois types de sols de rivières de Côte d'Ivoire, 121 pp. Paris: Office de la Recherche Scientifique et Technique Outre-mer 1970.

    Google Scholar 

  • Roberson, C. E.: Solubility implications of apatite in sea water. Prof. Pap. U.S. geol. Surv. 550D, 178–185 (1966).

    Google Scholar 

  • Ryther, J. H.: Geographic variations in productivity. In: The sea. Vol. 2. pp 347–380. Ed. by M. N. Hill. New York: Wiley-Interscience 1963.

    Google Scholar 

  • Sanders, F.: Organic productivity of inshore waters of Barbados: a study of the island mass effect and its causes, 200 pp. PhD dissertation, McGill University 1971

  • Sculthorpe, C. D.: The biology of aquatic plants, 610 pp. London: Edward Arnold 1967.

    Google Scholar 

  • Smith, F. G. W., R. H. Williams and C. C. David: An ecological survey of the subtropical inshore waters adjacent to Miami. Ecology 31, 119–146 (1950).

    Google Scholar 

  • Solorzano, L.: Determination of ammonia in natural waters by the phenolhypochlorite method. Limnol. Oceanogr. 14, 799–801 (1969).

    Google Scholar 

  • Stewart, W. D.: Nitrogen fixation in plants. 168 pp. London: Athlone Press 1966.

    Google Scholar 

  • Strickland, J. D. H. and T. R. Parsons: A manual of sea-water analysis. Bull. Fish. Res. Bd Can. 125, 1–195 (1965).

    Google Scholar 

  • Tomlinson, P. B.: On the morphology and anatomy of turtle grass, Thalassia testudinum (Hydrocharitaceae) II. Anatomy and development of the root in relation to function. Bull. mar. sci. 19, 57–91 (1969).

    Google Scholar 

  • Waksman, S. A., M. Hotchkiss and C. L. Carey: Marine bacteria and their role in the cycle of life in the sea. II. Bacteria concerned in the nitrogen cycle in the sea. Biol. Bull. mar. biol. Lab., Woods Hole 65, 137–166 (1933).

    Google Scholar 

  • Watt, W. D. and F. R. Hayes: Tracer study of the phosphorus cycle in sea water. Limnol. Oceanogr. 8, 276–285 (1963).

    Google Scholar 

  • Westlake, D. F.: Comparisons of plant productivity. Biol. Rev. 38, 385–425 (1963).

    Google Scholar 

  • Wood, E. J. F.: Marine microbial ecology, 243 pp. London: Chapman & Hall 1965.

    Google Scholar 

  • ZoBell, C. E.: Studies on redox potentials of marine sediments. Bull. Am. Ass. Petrol. Geol. 30, 477–513 (1946).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. Bunt, Miami

Based on a thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Marine Sciences from McGill University, Montreal, Quebec, Canada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patriquin, D.G. The origin of nitrogen and phosphorus for growth of the marine angiosperm Thalassia testudinum . Marine Biology 15, 35–46 (1972). https://doi.org/10.1007/BF00347435

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00347435

Keywords

Navigation