Skip to main content
Log in

Biochemical genetic divergence and systematics in sponges of the genera Corticium and Oscarella (Demospongiae: Homoscleromorpha) in the Mediterranean Sea

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The sponge sub-class Homoscleromorpha is generally considered to include just two families, the Oscarellidae (without spicules) and the Plakinidae (with simple spicules). In May 1990, an unusual sponge was found deep inside a submarine cave in the western Mediterranean Sea. On the basis of externally visible characters this sponge appeared indistinguishable from the common plakinid species Corticium candelabrum Schmidt, 1862. However, on closer examination in the laboratory the new sponge proved to be devoid of spicules. Therefore, despite great morphological similarities to C. candelabrum, the new sponge should, by taxonomic convention, have been placed in the Oscarellidae. On the basis of other criteria, the similarities to C. candelabrum were great and the new sponge was at first considered to be conspecific. Thus, the taxonomic position of the new sponge and its relationship to C. candelabrum are highly confusing. It could be an aspiculate morph of C. candelabrum, or a new and undescribed related species or, lacking spicules, it could justifiably be placed in a different family (Oscarellidae). The relationship of the new sponge to C. candelabrum and also to two species of Oscarella (Oscarellidae) was assessed by the use of enzyme electrophoresis to estimate genetic divergence between species. It was found that the new sponge was reproductively isolated from sympatric C. candelabrum, with 6 of 16 loci proving diagnostic. Thus it is clear that the new sponge belongs to a different biological species. Surprisingly it was also found that, although this new species was fairly closely related to C. candelabrum (level of genetic identity, I≈0.47), the two Oscarella species were similarly closely related to C. candelabrum (I≈0.31 to 0.41) and rather less closely to the new species (I≈0.17 to 0.28). Indeed from genetic identity estimates, O. tuberculata is more closely related to C. candelabrum than it is to O. lobularis. It is concluded that all homoscleromorph sponges should be placed in the single family Plakinidae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Avise, J. C. (1974). The systematic value of electrophoretic data. Syst. Zool. 23: 465–481

    Google Scholar 

  • Ayala, F. J. (1983). Enzymes as taxonomic characters. In: Oxford, G. S., Rollinson, D. (eds.) Protein polymorphism: adaptive and taxonomic significance. Academic Press, London, p. 3–26

    Google Scholar 

  • Balakirev, E. S., Manchenko, G. P. (1985). Intraspecies genetic variation in the sponge Suberites domuncula. Biol. Morya 5: 36–40

    Google Scholar 

  • Bergquist, P. R. (1979). Sponge chemistry: a review. Colloques int. Cent. natn. Rech. scient. 291: 383–392

    Google Scholar 

  • Boury-Esnault, N., Solé-Cava, A. M., Thorpe, J. P. (1992). Genetic and cytological divergence between colour morphs of the Mediterranean sponge Oscarella lobularis Schmidt (Porifera, Demospongiae, Oscarellidae). J. nat. Hist. (in press)

  • Fairbairn, D. J., Roff, D. A. (1980). Testing genetic models of isozyme variability without breeding data: can we depend on the 303-1? Can. J. Fish. aquat. Sciences 37: 1149–1159

    Google Scholar 

  • Gorman, G. C., Renzi, J. (1979). Genetic distance and heterozygosity estimates in electrophoretic studies: effects of sample size. Copeia 1979: 242–249

    Google Scholar 

  • Grassle, J. P., Grassle, J. F. (1976). Sibling species in the marine pollution indicator, Capitella capitata (Polychaeta). Science, N.Y. 192: 567–569

    Google Scholar 

  • Harris, H., Hopkinson, D. A. (1978). Handbook of enzyme electrophoresis in human genetics. North Holland, Amsterdam

    Google Scholar 

  • Hartman, W. D. (1958). Natural history of the marine sponges of Southern New England. Bull. Peabody Mus. nat. Hist. 12: 1–155

    Google Scholar 

  • Lewontin, R. C. (1958). A general method for investigating the equilibrium of gene frequencies in a population. Genetics, Princeton 43: 419–434

    Google Scholar 

  • Lévi, C. (1973). Systématique de la classe des Desmospongiaria (desmosponges). In: Grassé, P. P. (ed.) Traité de zoologie. Tome 3. Spongiaires. Masson, Paris, p. 577–631

    Google Scholar 

  • Lévi, C. (1979). Remarques sur la taxonomie des démosponges. Colloques int. Cent. natn. Rech. scient. 291: 487–502

    Google Scholar 

  • Macleod, J. A. A., Thorpe, J. P., Duggan, N. A. (1985). A biochemical genetic study of population structure in queen scallop (Chlamys opercularis) stocks in the Northern Irish Sea. Mar. Biol. 87: 77–82

    Google Scholar 

  • Murphy, R. W., Sites, J. W., Jr., Buth, D. G., Haufler, C. H. (1990). Proteins I. Isozyme electrophoresis. In: Hillis, D. M., Moritz, C. (eds.) Molecular systematics. Sinauer Associates, Suderland, Massachusetts, p. 45–126

    Google Scholar 

  • Nei, M. (1972). Genetic distance between populations. Am. Nat. 106: 283–292

    Google Scholar 

  • Nei, M. (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, Austin, Tex. 89: 583–590

    Google Scholar 

  • Nei, M. (1987). Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Nei, M., Roychoudhury, A. K. (1974). Sampling variances of heterozygosity and genetic distance. Genetics, Austin, Tex. 76: 379–390

    Google Scholar 

  • Richardson, B. J., Baverstock, P. R., Adams, M. (1986). Allozyme electrophoresis. Academic Press, Sydney

    Google Scholar 

  • Ryman, N., Utter, F. (1987). Population genetics and fishery management. University of Washington Press, Seattle

    Google Scholar 

  • Solé-Cava, A. M., Klautau, M., Boury-Esnault, N., Borojevic, R., Thorpe, J. P. (1991a). Genetic evidence for cryptic speciation in allopatric populations of two cosmopolitan species of the calcareous sponge genus Clathrina. Mar. Biol. 111: 381–386

    Google Scholar 

  • Solé-Cava, A. M., Thorpe, J. P. (1986). Genetic differentiation between morphotypes of the marine sponge Suberites ficus (Demospongiae: Hadromerida). Mar. Biol. 93: 247–253

    Google Scholar 

  • Solé-Cava, A. M., Thorpe, J. P. (1987). The uses of electrophoresis in sponge taxonomy. In: Vacelet, J., Boury-Esnault, N. (eds.) Taxonomy of Porifera. Springer Verlag, Berlin, p. 243–258

    Google Scholar 

  • Solé-Cava, A. M., Thorpe, J. P. (1990). High levels of gene variation in marine sponges. In: Reutzler, K. (ed.) New perspectives in sponge biology. Smithsonian Institution Press, Washington, p. 332–337

    Google Scholar 

  • Solé-Cava, A. M., Thorpe, J. P., Kaye, J. G. (1985). Reproductive isolation with little genetic divergence between Urticina (=Tealia) felina and U. eques (Anthozoa: Actiniaria). Mar. Biol. 85: 279–284

    Google Scholar 

  • Solé-Cava, A. M., Thorpe, J. P., Manconi, R. (1991b). A new Mediterranean species of Axinella detected by biochemical genetic methods. In: Keupp, H., Reitner, J. (eds.) Fossil and recent sponges. Springer Verlag, Berlin, p. 313–322

    Google Scholar 

  • Stoddart, J. A. (1989). Foliose Dictyoceratida of the Australian Great Barrier Reef. III. Preliminary electrophoretic systematics. Mar. Ecol. 10: 167–178

    Google Scholar 

  • Swafford, D. L., Selander, R. K. (1981). BIOSYS-1: a FORTRAN program of the comprehensive analysis of electrophoretic data in population genetics and systematics. J. Hered. 72: 281–283

    Google Scholar 

  • Thorpe, J. P. (1979). Enzyme variation and taxonomy: the estimation of sampling errors in measurements of interspecific genetic similarity. J. Linnean Soc. (Biol.) 11: 369–386

    Google Scholar 

  • Thorpe, J. P. (1982). The molecular clock hypothesis: biochemical evolution, genetic differentiation and systematics. A. Rev. Ecol. Syst. 13: 139–168

    Google Scholar 

  • Thorpe, J. P. (1983). Enzyme variation, genetic distance and evolutionary divergence in relation to levels of taxonomic separation. In: Oxford, G. S., Rollison, D. (eds.) Protein polymorphism: adaptive and taxonomic significance. Academic Press, London, p. 131–152

    Google Scholar 

  • Thorpe, J. P., Beardmore, J. A., Ryland, J. S. (1978). Genetic evidence for cryptic speciation in the marine bryozoan Alcyonidium gelatinosum. Mar. Biol. 49: 27–32

    Google Scholar 

  • Todd, C. D., Havenhand, J. N., Thorpe, J. P. (1988). Genetic differentiation, pelagic larval transport and gene flow between local populations of the intertidal marine mollusc Adalaria proxima (Alder and Hancock). Funct. Ecol. 2: 441–451

    Google Scholar 

  • Valenzuela, C. Y. (1985). Algebraic and epistemological restrictions in studies on Hardy-Weinberg equilibrium. Am. Nat. 125: 744–746

    Google Scholar 

  • Ward, R. D., Beardmore, J. A. (1977). Protein variation in the plaice (Pleuronectes platessa). Genet. Res. 30: 45–62

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. M. Pérès, Marseille

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solé Cava, A.M., Boury-Esnault, N., Vacelet, J. et al. Biochemical genetic divergence and systematics in sponges of the genera Corticium and Oscarella (Demospongiae: Homoscleromorpha) in the Mediterranean Sea. Marine Biology 113, 299–304 (1992). https://doi.org/10.1007/BF00347284

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00347284

Keywords

Navigation