Skip to main content
Log in

Relationships between sponges and crabs: patterns of epibiosis on Inachus aguiarii (Decapoda: Majidae)

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The association between sponges and the crab Inachus aguiarii Brito Capello, 1876 was studied by analysing the relationships between sponge distributional patterns on the crab carapaces and several morphological and biological crab parameters. Juveniles, mature females and mature males were differentiated on the basis of sex dimorphism and terminal pubertary moult. All three groups were fouled to different degrees by sponges. Percent sponge cover was related to carapace size only in mature males whereas mature females, all but one of which were ovigerous, were extensively covered regard-less of their size. It is proposed that some behavioural patterns unique to females, such as long resting periods in sponge-rich microhabitats, are responsible for these high sponge covers in females. Sponges showed two trends in the colonization of the carapace, leading to either a monopolizing or a sharing of the available carapace surface. The sponge species found on the carapaces studied are not obligatory epibionts of crabs, but are believed to reflect the sponge population characterizing the crab home range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature cited

  • Abelló, P., Villanueva, R., Gili, J. M. (1990). Epibiosis in deep-sea crab populations as indicator of biological and behavioural characteristics of the host. J. mar. biol. Ass. U.K. 70: 687–695

    Google Scholar 

  • Addicot, J. F. (1984). Mutualistic interactions in population and community processes. In: Price, P. W., Slobodchikoff, C. N., Gaud, W. S. (eds.) Novel approaches to interactive systems. John Wiley & Sons, New York, p. 437–455

    Google Scholar 

  • Arroyo, M. C., Uriz, M. J., Rubió, M. (1976). Inachus thoracicus (Crustacea Decapoda), substrato pasivo de Demospongia. Investigación pesq. 40(1): 15–57

    Google Scholar 

  • Bloom, S. A. (1975). The motile escape response of a sessile prey: a sponge-scallop mutualism. J. exp. mar. Biol. Ecol. 17: 311–321

    Google Scholar 

  • Bürgi, A. (1968). Contribution à l'étude du comportement vis-àvis d'objets étrangers chez les Majidae. Vie Milieu 2: 215–304

    Google Scholar 

  • Charlisle, A. I. (1953). Observation on the behaviour of Dromia vulgaris Milne Edwards, with simple ascidians. Pubbl. Staz. zool. Napoli 24: 142–151

    Google Scholar 

  • Dembowska, W. S. (1926). Study on the habits of the crab Dromia vulgaris M.E. Biol. Bull. mar. biol. Lab., Woods Hole 50: 163–178

    Google Scholar 

  • Feifarek, B. P. (1987). Spines and epibionts as antipredator defenses in the thorny oyster Spondylus americanus Hermann. J. exp. mar. Biol. Ecol. 105: 39–56

    Google Scholar 

  • Fenizia, G. (1935). La Dromia vulgaris (M. Edw.) e le sue abitudini. Archo. zool ital. 21: 509

    Google Scholar 

  • Gundersen, H. J. G. (1984). Stereology and sampling of biological surfaces. In: Echelin, P. (ed.) Analysis of organic and biological surfaces. John Wiley & Sons, New York, p. 477–507

    Google Scholar 

  • Hazlett, B., Rittschof, D. (1975). Daily movements and home range in Mithrax spinosissimus (Majidae, Decapoda). Mar. Behav. Physiol. 3: 101–118

    Google Scholar 

  • Kramer, C. Y. (1956). Extension of multiples range tests to group means with unequal numbers of replication. Biometrics 12: 307–310

    Google Scholar 

  • Legendre, L., Legendre, P. (1983). Numerical ecology. Elsevier, New York

    Google Scholar 

  • McLay, C. L. (1983). Dispersal and use of sponges and ascidians as camouflage by Cryptodromia hilgendorfi (Brachyura: Dromiacea). Mar. Biol. 76: 17–32

    Google Scholar 

  • Pielou, E. C. (1984). The interpretation of ecological data. John Wiley & Sons, New York

    Google Scholar 

  • Pitcher, C. R., Butler, A. J. (1987). Predation by asteroids, escape response, and morphometrics of scallops with epizoic sponge. J. exp. mar. Biol. Ecol. 112: 233–249

    Google Scholar 

  • Polimanti, O. (1911). Studi di fisiologia ecologica e sulla simbiosi di Suberites domuncula (Olivi) con la Dromia vulgaris (M. Edw.). Zool. Jb. (Abt. allg. Zool. Physiol. Tiere) 30: 359

    Google Scholar 

  • Rützler, K. (1970). Spatial competition among Porifera: solution by epizoism. Oecologia 5: 85–95

    Google Scholar 

  • Rützler, K. (1978). Sponges in coral reefs. In: Stoddart, D. R., Johanes, R. E. (eds.) Coral reefs: research methods. Monogr. oceanogr. Methodol. (UNESCO) 5: 299–313

  • Sará, M. (1970). Competition and cooperation in sponge populations. Symp. zool. Soc. Lond. 25: 273–284

    Google Scholar 

  • Tukey, J. W. (1953). The problem of multiple comparisons. Department of Statistics, Princeton University

  • Vance, R. R. (1978). A mutualistic interaction between a sessile marine clam and its epibionts. Ecology 59(4): 679–685

    Google Scholar 

  • Willians, R., Moyse, J. (1988). Occurrence, distribution, and orientation of Poecilasma kaempferi Darwin (Cirripedia: Pedunculata) epizoic on Neolithodes grimaldi Milne-Edwards and Bouvier (Decapoda: Anomura) in the Northeast Atlantic. J. Crustacean Biol. 8(2): 177–189

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by O. Kinne, Oldendorf/Luhe

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maldonado, M., Uriz, M.J. Relationships between sponges and crabs: patterns of epibiosis on Inachus aguiarii (Decapoda: Majidae). Marine Biology 113, 281–286 (1992). https://doi.org/10.1007/BF00347282

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00347282

Keywords

Navigation