Skip to main content
Log in

Control regions within the argECBH gene cluster of Escherichia coli K12

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

In Escherichia coli K12, four of the nine structural genes involved in the biosynthesis of arginine (argE, C, B and H) form a tight cluster within which a clockwise-polarized unit of expression (argCBH) had previously been identified. From a mutant carrying an argCB deletion that greatly lowers the rate of expression of argE but falls short of known argE markers, we have isolated several derivatives in which the expression of argE is partly restored. In about a third of these strains repression of both E and H enzymes by arginine is almost abolished. The mutations responsible appear to be cis-dominant and to map to the right of argE, probably between argE and C. One mutant in which control of argE alone is affected has also been found; it is shown to carry a duplication of argE in addition to the argCB deletion of the parental strain. We discuss the hypothesis that argE and argCBH form two operons transcribed in opposite directions from an internal promoter-operator complex.

It is also suggested that a secondary promoter exists at or near the argB-H boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armstrong, F. B.: Orientation and order of loci of the met-arg region in the Salmonella typhimurium linkage map. Genetics 56, 463–466 (1967).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Atkins, F. F., Loper, J. C.: Transcription initiation in the histidine operon of Salmonella typhimurium. Proc. nat. Acad. Sci. (Wash.) 65, 925–932 (1970).

    Article  CAS  Google Scholar 

  • Bauerle, R. H., Margolin, P.: Evidence for two sites for initiation of gene expression in the tryptophan operon of Salmonella typhimurium. J. molec. Biol. 26, 423–436 (1967).

    Article  CAS  Google Scholar 

  • Baumberg, S.: Acetylhistidine as substrate for acetylornithinase: a new system for the selection of arginine regulation mutants in Escherichia coli. Molec. gen. Genet. 106, 162–173 (1970).

    Article  CAS  Google Scholar 

  • Baumberg, S., Ashcroft, E.: Absence of polar effect of frameshift mutations in the E gene of the Escherichia coli argECBH cluster. J. gen. Microbiol. 69, 365–373 (1971).

    Article  CAS  Google Scholar 

  • Baumberg, S., Bacon, D. F., Vogel, H. J.: Individually repressible enzymes specified by clustered genes of arginine synthesis. Proc. nat. Acad. Sci. (Wash.) 53, 1029–1032 (1965).

    Article  CAS  Google Scholar 

  • Berberich, M. A., Kovach, J. S., Goldberger, R. F.: Chain initiation in a polycistronic message: sequential versus simultaneous derepression of the enzymes for histidine biosynthesis in Salmonella typhimurium. Proc. nat. Acad. Sci. (Wash.) 75, 1857–1864 (1967).

    Article  Google Scholar 

  • Clark, A. J., Margulies, A. D.: Isolation and characterization of recombination-deficient mutants of Escherichia coli K12. Proc. nat. Acad. Sci. (Wash.) 53, 451–459 (1965).

    Article  CAS  Google Scholar 

  • Cunin, R., Elseviers, D., Glansdorff, N.: De novo gene duplication versus reactivation of cryptic genes in Escherichia coli K-12. Molec. gen. Genet. 108, 154–157 (1970).

    Article  CAS  Google Scholar 

  • Cunin, R., Elseviers, D., Sand, G., Freundlich, G., Glansdorff, N.: On the functional organization of the argECBH cluster of genes in Escherichia coli K-12. Molec. gen. Genet. 106, 32–47 (1969).

    Article  CAS  Google Scholar 

  • Cunin, R., Glansdorff, N.: Messenger RNA from arginine and phosphoenolpyruvate carboxylase genes in argR + and argR - strains of E. coli K12. FEBS Letters 18, 135–137 (1971a).

    Article  CAS  Google Scholar 

  • Cunin, R., Glansdorff, N.: Transcriptional control of arginine genes in Escherichia coli K12. Arch. Int. Physiol. Biochim. 79, 1014–1015 (1971b).

    Google Scholar 

  • Demerec, M., Adelberg, E. A., Clark, A. J., Hartman, P. E.: A proposal for a uniform nomenclature in bacterial genetics. Genetics 54, 61–76 (1966).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Echols, H., Green, L.: Establishment and maintenance of repression by bacteriophage lambda: the role of the cI, cII and cIII proteins. Proc. nat. Acad. Sci. (Wash.) 68, 2190–2194 (1971).

    Article  CAS  Google Scholar 

  • Eisen, H., Pereira da Silva, L., Jacob, F.: The regulation and mechanism of DNA synthesis in bacteriophage. Cold Spr. Harb. Symp. quant. Biol. 33, 755–764 (1968).

    Article  CAS  Google Scholar 

  • Elseviers, D., Cunin, R., Glansdorff, N.: Reactivation of arginine genes under the influence of polar mutations. FEBS Letters 3, 18–20 (1969).

    Article  CAS  Google Scholar 

  • Eron, L., Block, R.: Mechanism of initiation and repression of in vitro transcription of the lac operon of Escherichia coli. Proc. nat. Acad. Sci. (Wash.) 68, 1828–1832 (1971).

    Article  CAS  Google Scholar 

  • Fan, D. P.: Deletion in limited homology recombination in Escherichia coli. Genetics 61, 351–361 (1969).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Glansdorff, N.: Topography of cotransducible arginine mutations in Escherichia coli K-12. Genetics 51, 167–179 (1965).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Glansdorff, N.: Pseudoinversions in the chromosome of Escherichia coli K-12. Genetics 55, 49–61 (1967).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Glansdorff, N., Sand, G.: Coordination of enzyme synthesis in the arginine pathway of Escherichia coli K-12. Biochim. biophys. Acta (Amst.) 108, 308–311 (1965).

    Article  Google Scholar 

  • Glansdorff, N., Sand, G.: Duplication of a gene belonging to an arginine operon of Escherichia coli K-12. Genetics 60, 257–268 (1968).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Glansdorff, N., Sand, G., Verhoef, C.: The dual control of ornithine transcarbamylase synthesis in Escherichia coli K-12. Mutation Res. 4, 743–751 (1967).

    Article  CAS  Google Scholar 

  • Gorini, L., Gundersen, W., Burger, M.: Genetics of regulation of enzyme synthesis in the arginine biosynthetic pathway of Escherichia coli. Cold Spr. Harb. Symp. quant. Biol. 26, 173–182 (1961).

    Article  CAS  Google Scholar 

  • Guha, A., Saturen Y., Szybalski, W.: Divergent orientation of transcription from the biotin locus of Escherichia coli. J. molec. Biol. 56, 53–62 (1971).

    Article  CAS  Google Scholar 

  • Ippen, K., Miller, J. H., Scaife, J. G., Beckwith, J.: New controlling elements in the lac operon of Escherichia coli. Nature (Lond.) 217, 825–827 (1968).

    Article  CAS  Google Scholar 

  • Jacob, F., Wollman, E.: Sexuality and the genetics of bacteria. New York: Academic Press 1961.

    Google Scholar 

  • Jacoby, G. A.: Mapping the gene determining ornithine transcarbamylase and its operator in Escherichia coli. B. J. Bact. 108, 645–651 (1971).

    CAS  PubMed  Google Scholar 

  • Jacoby, G. A.: Control of the argECBH cluster in Escherichia coli. Molec. gen. Genet. 117, 337–348 (1972).

    CAS  PubMed  Google Scholar 

  • Jacoby, G. A., Gorini, L.: A unitary account of the repression mechanism of arginine biosynthesis in Escherichia coli. I. The genetic evidence. J. molec. Biol. 39, 73–87 (1969).

    Article  CAS  Google Scholar 

  • Lavallé, R.: Regulation at the level of translation in the arginine pathway of Escherichia coli K-12. J. molec. Biol. 51, 449–451 (1970).

    Article  Google Scholar 

  • Legrain, C., Halleux, P., Stalon, V., Glansdorff, N.: The dual genetic control of arginine carbamoyltransferase in Escherichia coli, a case of bacterial hybrid enzyme. Europ. J. Biochem., in press (1972).

  • Lindahl, C.: Bacteriophage P2: replication of the chromosome requires a protein which acts only on the genome that coded for it. Virology 42, 522–533 (1970).

    Article  CAS  Google Scholar 

  • Low, B.: Formation of merodiploids in matings with a class of rec - recipient strains of Escherichia coli K-12. Proc. nat. Acad. Sci. (Wash.) 60, 160–167 (1968).

    Article  CAS  Google Scholar 

  • Maas, K. W.: Studies on repression of arginine biosynthesis in Escherichia coli. Cold. Spr. Harb. Symp. quant. Biol. 26, 183–191 (1961).

    Article  CAS  Google Scholar 

  • Maas, W. K., Clark, A. J.: Studies on the mechanism of repression of arginine biosynthesis in Escherichia coli. II. Dominance of repressibility in diploids. J. molec. Biol. 8, 365–370 (1964).

    Article  CAS  Google Scholar 

  • Maas, W. K., Maas, R., Wiame, J. M., Glansdorff, N.: Studies on the mechanism of repression of arginine biosynthesis in Escherichia coli. I. Dominance of repressibility in zygotes. J. molec. Biol. 8, 359–364 (1964).

    Article  CAS  Google Scholar 

  • McFall, E., Bloom, F. R.: Catabolite repression in the D-Serine-deaminase system of Escherichia coli K-12. J. Bact. 105, 241–248 (1971).

    CAS  PubMed  Google Scholar 

  • McLellan, W. L., Vogel, H. J.: Translational repression in the arginine system of Escherichia coli. Proc. nat. Acad. Sci. (Wash.) 67, 1703–1719 (1970).

    Article  CAS  Google Scholar 

  • Pittard, J., Loutit, J. S., Adelberg, E. A.: Gene transfer by F′ strains of Escherichia coli K-12. J. Bact. 85, 1394–1401 (1963).

    CAS  PubMed  Google Scholar 

  • Prozesky, O. W.: Transductional analysis of arginineless mutants in Proteus mirabilis. J. gen. Microbiol. 54, 127–143 (1968).

    Article  CAS  Google Scholar 

  • Reichardt, L., Kaiser, A. D.: Control of λ repressor synthesis. Proc. nat. Acad. Sci. (Wash.) 68, 2185–2189 (1971).

    Article  CAS  Google Scholar 

  • Reznikoff, W. S., Miller, J. H., Scaife, J. G., Beckwith, J. R.: A mechanism for repressor action. J. molec. Biol. 43, 201–213 (1969).

    Article  CAS  Google Scholar 

  • Rogers, P., Krzyzek, R., Kaden, T.M., Arfman, E.: Effect of arginine and canavanine on arginine messenger RNA synthesis. Biochem. biophys. Res. Commun. 44, 1220–1226 (1971).

    Article  CAS  Google Scholar 

  • Sadler, J. R., Smith, T. F.: Mapping of the lactose operator. J. molec. Biol. 62, 139–169 (1971).

    Article  CAS  Google Scholar 

  • Scaife, J., Beckwith, J. R.: Mutational alteration of the maximal level of lac operon expression. Cold Spr. Harb. Symp. quant. Biol. 31, 403–408 (1966).

    Article  CAS  Google Scholar 

  • Stacey, K. A., Simson, E.: Improved method for the isolation of thymine requiring mutants of Escherichia coli. J. Bact. 90, 554–555 (1965).

    CAS  PubMed  Google Scholar 

  • Udaka, S.: Isolation of the arginine repressor in Escherichia coli. Nature (Lond.) 228, 336–338 (1970).

    Article  CAS  Google Scholar 

  • Vogel, H. J.: Aspects of repression in the regulation of enzyme synthesis: pathway-wide control and enzyme-specific response. Cold Spr. Harb. Symp. quant. Biol. 26, 163–172 (1961).

    Article  CAS  Google Scholar 

  • Vogel, H. J., Bonner, D. M.: Acetylornithinase of Escherichia coli: partial purification and some properties. J. biol. Chem. 218, 97–106 (1956).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by P. Starlinger

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elseviers, D., Cunin, R., Glansdorff, N. et al. Control regions within the argECBH gene cluster of Escherichia coli K12. Molec. gen. Genet. 117, 349–366 (1972). https://doi.org/10.1007/BF00333028

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00333028

Keywords

Navigation