Skip to main content
Log in

Thallium determination in biological materials by radiochemical neutron activation analysis

  • Original Papers
  • Biological Materials
  • Published:
Fresenius' Journal of Analytical Chemistry Aims and scope Submit manuscript

Summary

The determination of thallium in biological materials sometimes cause problems because of the low concentrations of this toxic element. In the present work a method is described which optimizes the parameters affecting the specificity and sensitivity of the radiochemical NAA of thallium in biological samples. High thermal neutron flux, complete decomposition of the organic matter by pressurized digestion, TlI precipitations, liquid extraction of HTlBr4 and La(OH)3 scavenging purification are the steps leading to the final homogeneous preparation of Tl2CrO4 for β-activity measurement. The method was applied to various materials as bovine liver, bone and nails. Good agreement was found between certified and determined thallium concentrations of the reference material CRM 176. The chemical yield comes to about 80%, with low deviations. The sensitivity of the method is about 10−3 μg/g, the standard deviations being in the range of 3.6% (CRM 176), 14% (bovine liver), and 17% (bone). Detailed working instructions are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Griepink B, Sager M, Tölg G (1988) Pure Appl Chem 60: 1425–1436

    Google Scholar 

  2. Dams R (1990) Fresenius J Anal Chem 337:492–497

    Google Scholar 

  3. Esprit M, Vandecasteele C, Hoste J (1985) J Radioanal Nucl Chem 88:31–44

    Google Scholar 

  4. Cohen IM, Resnizky SM, Baro GB (1982) J Radioanal Chem 72:451–461

    Google Scholar 

  5. Bennett T, Cavers D, D'Auria JM (1973) J Radioanal Chem 13:201–212

    Google Scholar 

  6. Talat-Erber M, Okar S (1966) USAEC Report CNAEM-39

  7. De Ruck A, Dams R (1985) J Radioanal Nucl Chem 94:87–94

    Google Scholar 

  8. Segebade C, Fusban H-U, Weise H-P (1980) J Radioanal Chem 59:399–405

    Google Scholar 

  9. Adamek A, Obrusnik I (1971) Radiochem Radioanal Lett 7:147–154

    Google Scholar 

  10. Morris DFC, Killick RA (1960) Talanta 4:51–60

    Google Scholar 

  11. Reed GW, Kigoshi K, Turkevich A (1958) Proc 2nd Int Conf Peaceful Uses of At Energy 28:486–490

    Google Scholar 

  12. Keays RR, Ganapathy R, Laul JC, Anders E, Herzog GF, Jeffery PM (1970) Science 167:490–493

    Google Scholar 

  13. Kuznetsov RA, Stuyf VI, Rizvanova NG (1985) Radiokhimiya 27:796–804

    Google Scholar 

  14. Kuznetsov RA (1980) Zh Anal Khim 35:104–110

    Google Scholar 

  15. Kuznetsov RA (1978) Zh Anal Khim 33:2062–2064

    Google Scholar 

  16. Jaffrezic H, Decarreau A, Carbonnel JP, Deschamps N (1973) J Radioanal Chem 18:49–53

    Google Scholar 

  17. Keays RR, Ganapathy R, Laul JC, Krähenbühl U, Morgan JW (1974) Anal Chim Acta 72:1–29

    Google Scholar 

  18. Ehmann WD, Huizenga JR (1959) Geochim Cosmochim Acta 17:125–135

    Google Scholar 

  19. Delbecq CJ, Glendenin LE, Yuster PH (1953) Anal Chem 25:350–351

    Google Scholar 

  20. Isaeva EA, Makasheva IE, Maslov IA, Obukhov AP (1962) Radiokhimiya 4:345–350 (CA 59, 14571)

    Google Scholar 

  21. Rudolph K-P, Flachkowsky J, Lange A (1984) Isotopenpraxis 20:263–269

    Google Scholar 

  22. Heyndricks A (1957) Acta Pharmacol Toxicol 14:20–26

    Google Scholar 

  23. Itawi RK, Turel ZR (1967) J Radioanal Nucl Chem 115:141–147

    Google Scholar 

  24. Adamek A, Obrusnik I, Kukula F, Krivanek M (1967) Nucl Activ Techn Life Sci, Proc Symp Amsterdam, pp 189–194

  25. Henke G, Bohn G (1969) Arch Toxikol 25:48–56

    Google Scholar 

  26. Henke G, Fitzek A (1971) Arch Toxikol 27:266–272

    Google Scholar 

  27. Weinig E, Zink P (1967) Arch Toxikol 22:255–274

    Google Scholar 

  28. Hamilton EI, Minski MJ, Cleary JJ (1972) Sci Total Environ 1:1–14

    Google Scholar 

  29. Qureshi IH, Meinke WW (1963) Radiochim Acta 2:99–103

    Google Scholar 

  30. Morsches B, Tölg G (1970) Fresenius Z Anal Chem 250:81–99

    Google Scholar 

  31. Geilmann W, Neeb K-H (1959) Fresenius Z Anal Chem 165:251–268

    Google Scholar 

  32. Bock R, Kusche H, Bock E (1953) Fresenius Z Anal Chem 138:167–179

    Google Scholar 

  33. Henke G, Nucci A, Queiroz LS (1982) Arch Toxicol 50:125–131

    Google Scholar 

  34. Lenihan JMA, Thomson SJ (1969) Advances in activation analysis, vol 1. Academic Press, New York London, p 29

    Google Scholar 

  35. Koch RC (1960) Activation analysis handbook. Academic Press, New York London, p 180

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henke, G. Thallium determination in biological materials by radiochemical neutron activation analysis. Fresenius J Anal Chem 339, 245–248 (1991). https://doi.org/10.1007/BF00325746

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00325746

Keywords

Navigation