Skip to main content
Log in

Quantification of fish hepatic metallothioneins, naturally or artificially induced, by ELISA: A comparison with radioimmunoassay and differential pulse polarography

  • Original Papers
  • Environmental Analysis
  • Published:
Fresenius' Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

An ELISA has been developed for the quantification of metallothioneins (MT) in liver from different species of fish. MT has also been quantified by RIA and DPP to allow a comparison between the methods. The immunoassays were carried out with a polyclonal antibody raised against perch (Perca fluviatilis) hepatic MT [1] which cross-reacted with hepatic MT from dab (Limanda limanda), lemon-dab (Microstomus kitt), and cod (Gadus morhua). The ELISA was more sensitive for the detection of MT from the flatfish than RIA and DPP. The detection limits of MT by immunoassays were lower for fish caught in the field than for Cd-injected fish. The immunoreactivity differed between MT from different fish species, more markedly between fish MT and rabbit MT. MT values determined by the three methods have been compared and showed that the results were similar and significantly correlated. Advantages and disadvantages of the ELISA are discussed in relation to the other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hogstrand C, Haux C (1990) Toxicol Appl Pharmacol 103:56–65

    Google Scholar 

  2. Hamer DH (1986) Ann Rev Biochem 55:913–951

    Google Scholar 

  3. Kägi JHR, Kogima Y (1987) In: 52 Kägi JHR, Kogima Y (eds) Experentia Suppl. Metallothionein II. Birkhauser, Basel, pp 25–61

    Google Scholar 

  4. Kägi JHR, Schäffer A (1988) Biochem 27:8509–8515

    Google Scholar 

  5. Brady FO (1982) Elsevier, Biomed. Press, Amsterdam New York, pp 143–145

  6. Webb M, Cain K (1982) Biochem 31:137–142

    Google Scholar 

  7. Hogstrand C, Haux C (1991) Comp Biochem Physiol 100C:137–141

    Google Scholar 

  8. Kito H, Tazawa T, Ose Y, Sato T, Ishikawa T (1982) Comp Biochem Physiol 73C:129–134

    Google Scholar 

  9. Shears MA, Fletcher GI (1984) Can J Zool 62:2211–2220

    Google Scholar 

  10. Roch M, McCarter JA, Matheson AT, Clarck MJR, Olafson RW (1982) Can J Fish Aquat Sci 39:1596–1601

    Google Scholar 

  11. Hogstrand C, Lithner G, Haux C (1991) Pharmacol Toxicol 68:492–501

    Google Scholar 

  12. Olafson RW, Thompson JAJ (1974) Mar Biol 28:83–86

    Google Scholar 

  13. Bouquegneau JM, Gerday C, Disteche A (1975) Febs Lett 55:173–177

    Google Scholar 

  14. Lehman LD, Klaassen CD (1986) Anal Biochem 153:305–314

    Google Scholar 

  15. Eaton DL, Toal BF (1982) Toxicol Appl Pharmacol 66:134–142

    Google Scholar 

  16. Berthet B (1989) Oceanis 15:401–409

    Google Scholar 

  17. Wofford HW, Thomas P (1984) Mar Env Res 14:119–137

    Google Scholar 

  18. Olafson RW, Sim RG (1979) Anal Biochem 100:343–351

    Google Scholar 

  19. Thompson JAJ, Cosson RP (1984) Mar Env Res 11:137–152

    Google Scholar 

  20. Vander Mallie RJ, Garvey JS (1979) J Biol Chem 254:8416–8421

    Google Scholar 

  21. Garvey JS, Vander Mallie RJ, Chang CC (1982) In: Langore JJ, Van Vunakis H (eds) Methods in enzymology, Vol 84. Academic Press, New York, pp 121–138

    Google Scholar 

  22. Mehra RJ, Bremner I (1983) Biochem J 213:459–465

    Google Scholar 

  23. Thomas DG, Linton H, Garvey JS (1986) J Immun Meth 89:239–247

    Google Scholar 

  24. Roesijadi G, Unger ME, Morris JE (1988) Can J Fish Aquat Sci 45:1257–1263

    Google Scholar 

  25. Chatterjee A, Maiti IB (1987) Molec Cell Biochem 78:55–64

    Google Scholar 

  26. Hylland K, Haux C, Hogstrand C, Sletten K, Andersen RA (1994) Fish Physiol Biochem 13:81–91

    Google Scholar 

  27. Norey CG, Lees WE, Darke BM, Stark JM, Baker TS, Cryer A, Kay J (1990) Comp Biochem Physiol 95B:597–601

    Google Scholar 

  28. George S, Burgess D, Leaver M, Frerichs N (1992) Fish Physiol Biochem 10:43–54

    Google Scholar 

  29. Duquesne S, Richard A (1994) Mar Biol 119:461–470

    Google Scholar 

  30. Olafson RW, Olsson PE (1991) Meth Enzym 205:205–213

    Google Scholar 

  31. Hogstrand C, Wilson RW, Polgar D, Wood CM (1994) J Exp Biol 186:55–73

    Google Scholar 

  32. Hylland K, Haux C, Hogstrand C (1992) Mar Ecol Progr Ser 91:89–96

    Google Scholar 

  33. Hogstrand C, Haux C (1990) J Exp Mar Biol Ecol 138:69–84

    Google Scholar 

  34. Hogstrand C, Olsson PE, Haux C (1989) Mar Env Res 28:183–186

    Google Scholar 

  35. Ghaffar A, Aggett PJ, Bremner I (1989) In: Johnson, Fenwick (eds) Royal Society of Chemistry and Special Publications, Sothgate, pp 74–76

  36. Olsson PE, Haux C (1986) Aquat Toxicol 9:231–242

    Google Scholar 

  37. Hogstrand C, Haux C (1992) Anal Biochem 200:388–392

    Google Scholar 

  38. Chatterjee A. Maiti IB (1990) Molec Cell Biochem 94:175–181

    Google Scholar 

  39. Winge DR, Garvey JS (1983) Proc Natl Acad Sci USA 80:2472–2476

    Google Scholar 

  40. Kay J, Cryer A, Darke BM, Kille P, Lees WE, Norey CG, Marshall SJ (1991) Int J Biochem 23:1–5

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duquesne, S., Janquin, M.A. & Hogstrand, C. Quantification of fish hepatic metallothioneins, naturally or artificially induced, by ELISA: A comparison with radioimmunoassay and differential pulse polarography. Fresenius J Anal Chem 352, 589–595 (1995). https://doi.org/10.1007/BF00323079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00323079

Keywords

Navigation