Skip to main content
Log in

The first analysed archegoniate mitochondrial gene (COX3) exhibits extraordinary features

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

The first mitochondrial-encoded gene of an archeogoniate has been identified, cloned and sequenced. The cytochrome oxidase III gene (cox3) of the moss Physcomitrella patens consists of a 618 bp open reading frame with high homology (around 72%) to known cox3 sequences of higher plants. Nevertheless, it is a quarter shorter than these. The cox3 gene of P. patens contains no introns and reveals a G+C-content of 41.3%. The region containing the cox3 gene exists as a single copy in the mitochondrial genome as shown by restriction mapping. In the 5′ flanking sequence a putative ribosome binding site and a putative secondary structure were found. Two main transcripts of 2.4 kb and 2.6 kb were detected indicating a complex mitochondrial transcription pattern possibly due to co-transcription. Additional open reading frames were found downstream from, as well as upstream of, the cox3 gene. In Western blots a polyclonal cox3 antibody from yeast detected one single band with an apparent molecular weight of 22 kDa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abraham JM, Feagin JE, Stuart K (1988) Cell 55:267–272

    Google Scholar 

  • Aguettaz P, Seyer P, Pesey H, Lescure A-M (1987) Plant Mol Biol 8:169–177

    Google Scholar 

  • Bland MM, Levings CS III, Matzinger DF (1986) Mol Gen Genet 204:8–16

    Google Scholar 

  • Capaldi RA (1990) Annu Rev Biochem 59:569–596

    Google Scholar 

  • Cech TR (1988) Gene 73:259–271

    Google Scholar 

  • Chirgwin JM, Przybyla AE, MacDonald RJ, Rutter WJ (1979) Biochemistry 18:5294–5299

    Google Scholar 

  • Chomzynski P, Quasba PK (1984) Biochem Biophys Res Comm 122:340–344

    Google Scholar 

  • Corpet F (1988) Nucleic Acids Res 16:10881–10890

    Google Scholar 

  • Covello PS, Gray MW (1989) Nature 341:662–666

    Google Scholar 

  • Davis BM (1909) Amer Nat 43:107–111

    Google Scholar 

  • Dawson AJ, Jones VP, Leaver CJ (1984) EMBO J 3:2107–2113

    Google Scholar 

  • De Blas AL, Cherwinski HM (1983) Anal Biochem 133:214–219

    Google Scholar 

  • Feagin JE, Abraham JM, Stuart K (1988) Cell 53:413–422

    Google Scholar 

  • Freier SM, Kierzek R, Jaeger JA, Sugimoto N, Carothers MH, Neilson T, Turner DH (1986) Proc Acad Natl Sci USA 83:9373–9377

    Google Scholar 

  • Grabau EA, Gengenbach BG (1989) Plant Mol Biol 13:595–597

    Google Scholar 

  • Gualberto JM, Domon C, Weil J-H, Grienenberger J-M (1990) Curr Genet 17:41–47

    Google Scholar 

  • Hanahan D (1985) In: Glover DH (ed) DNA Cloning. IRL Press, Oxford, pp 109–135

    Google Scholar 

  • Hiesel R, Schobel W, Schuster W, Brennicke A (1987) EMBO J 6:29–34

    Google Scholar 

  • Hiesel R, Wissinger B, Schuster W, Brennicke A (1989) Science 246:1632–1634

    Google Scholar 

  • Kaleikau EK, Andre CP, Walbot V (1990) Nucleic Acids Res 18:371

    Google Scholar 

  • Lonsdale DM (1989) In: Marcus A (ed) The biochemistry of plants. Academic Press, New York, pp 229–295

    Google Scholar 

  • Loomis WD, Batteile J (1966) Phytochemistry 5:423–438

    Google Scholar 

  • Macfarlane JL, Wahleithner JA, Wolstenholme DR (1990) Curr Genet 17:33–40

    Google Scholar 

  • Marienfeld JR, Abel WO (1988) Mitt Inst Allg Bot Hamburg 22:35–52

    Google Scholar 

  • Marienfeld JR, Reski R, Friese C, Abel WO (1989) Plant Sci 61:235–244

    Google Scholar 

  • McCarty DM, Hehman GL, Hauswirth WW (1988) Nucleic Acids Res 16:9873

    Google Scholar 

  • Michaelis G, Vahrenholz C, Pratje E (1990) Mol Gen Genet 223:211–216

    Google Scholar 

  • Newton KJ (1988) Annu Rev Plant Physiol Plant Mol Biol 39:503–532

    Google Scholar 

  • Palmer JD, Shields CR (1984) Nature 307:437–440

    Google Scholar 

  • Pratje E, Schnierer S, Dujon B (1984) Curr Genet 9:75–82

    Google Scholar 

  • Pratje E, Vahrenholz C, Bühler S, Michaelis G (1989) Curr Genet 16:61–64

    Google Scholar 

  • Quagliariello C, Saiardi A, Gallerani R (1990) Curr Genet 18:355–363

    Google Scholar 

  • Reski R, Abel WO (1985) Planta 165:354–358

    Google Scholar 

  • Rigby PWJ, Diekmann M, Rhodes C, Berg P (1977) J Mol Biol 113:237–251

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989): Molecular cloning. Cold Spring Harbor Laboratory, Cold Spring Harbour, New York

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) Proc Natl Acad Sci USA 74:5463–5467

    Google Scholar 

  • Schnare MN, Gray MW (1982) Nucleic Acids Res 10:3921–3932

    Google Scholar 

  • Schuster W, Hiesel R, Isaac PG, Leaver CJ, Brennicke A (1986) Nucleic Acids Res 15:5943–5954

    Google Scholar 

  • Sloof P, van den Burg J, Voogd A, Benne R (1987) Nucleic Acids Res 15:51–65

    Google Scholar 

  • Southern EM (1975) J Mol Biol 98:503–517

    Google Scholar 

  • Vahrenholz S, Pratje E, Michaelis G, Dujon B (1985) Mol Gen Genet 201:213–224

    Google Scholar 

  • Vieira J, Messing J (1982) Gene 19:259–263

    Google Scholar 

  • Ward BL, Anderson RS, Bendich AJ (1981) Cell 25:793–803

    Google Scholar 

  • Yanisch-Perron C, Viera J, Messing J (1985) Gene 33:103–119

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by K. Esser

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marienfeld, J.R., Reski, R. & Abel, W.O. The first analysed archegoniate mitochondrial gene (COX3) exhibits extraordinary features. Curr Genet 20, 319–329 (1991). https://doi.org/10.1007/BF00318522

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00318522

Key words

Navigation