Current Genetics

, Volume 20, Issue 4, pp 319–329 | Cite as

The first analysed archegoniate mitochondrial gene (COX3) exhibits extraordinary features

  • Joachim R. Marienfeld
  • Ralf Reski
  • Wolfgang O. Abel
Original Articles

Summary

The first mitochondrial-encoded gene of an archeogoniate has been identified, cloned and sequenced. The cytochrome oxidase III gene (cox3) of the moss Physcomitrella patens consists of a 618 bp open reading frame with high homology (around 72%) to known cox3 sequences of higher plants. Nevertheless, it is a quarter shorter than these. The cox3 gene of P. patens contains no introns and reveals a G+C-content of 41.3%. The region containing the cox3 gene exists as a single copy in the mitochondrial genome as shown by restriction mapping. In the 5′ flanking sequence a putative ribosome binding site and a putative secondary structure were found. Two main transcripts of 2.4 kb and 2.6 kb were detected indicating a complex mitochondrial transcription pattern possibly due to co-transcription. Additional open reading frames were found downstream from, as well as upstream of, the cox3 gene. In Western blots a polyclonal cox3 antibody from yeast detected one single band with an apparent molecular weight of 22 kDa.

Key words

Lower plant mitochondrial DNA Cytochrome oxidase subunit III gene Moss (Physcomitrella patens

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham JM, Feagin JE, Stuart K (1988) Cell 55:267–272Google Scholar
  2. Aguettaz P, Seyer P, Pesey H, Lescure A-M (1987) Plant Mol Biol 8:169–177Google Scholar
  3. Bland MM, Levings CS III, Matzinger DF (1986) Mol Gen Genet 204:8–16Google Scholar
  4. Capaldi RA (1990) Annu Rev Biochem 59:569–596Google Scholar
  5. Cech TR (1988) Gene 73:259–271Google Scholar
  6. Chirgwin JM, Przybyla AE, MacDonald RJ, Rutter WJ (1979) Biochemistry 18:5294–5299Google Scholar
  7. Chomzynski P, Quasba PK (1984) Biochem Biophys Res Comm 122:340–344Google Scholar
  8. Corpet F (1988) Nucleic Acids Res 16:10881–10890Google Scholar
  9. Covello PS, Gray MW (1989) Nature 341:662–666Google Scholar
  10. Davis BM (1909) Amer Nat 43:107–111Google Scholar
  11. Dawson AJ, Jones VP, Leaver CJ (1984) EMBO J 3:2107–2113Google Scholar
  12. De Blas AL, Cherwinski HM (1983) Anal Biochem 133:214–219Google Scholar
  13. Feagin JE, Abraham JM, Stuart K (1988) Cell 53:413–422Google Scholar
  14. Freier SM, Kierzek R, Jaeger JA, Sugimoto N, Carothers MH, Neilson T, Turner DH (1986) Proc Acad Natl Sci USA 83:9373–9377Google Scholar
  15. Grabau EA, Gengenbach BG (1989) Plant Mol Biol 13:595–597Google Scholar
  16. Gualberto JM, Domon C, Weil J-H, Grienenberger J-M (1990) Curr Genet 17:41–47Google Scholar
  17. Hanahan D (1985) In: Glover DH (ed) DNA Cloning. IRL Press, Oxford, pp 109–135Google Scholar
  18. Hiesel R, Schobel W, Schuster W, Brennicke A (1987) EMBO J 6:29–34Google Scholar
  19. Hiesel R, Wissinger B, Schuster W, Brennicke A (1989) Science 246:1632–1634Google Scholar
  20. Kaleikau EK, Andre CP, Walbot V (1990) Nucleic Acids Res 18:371Google Scholar
  21. Lonsdale DM (1989) In: Marcus A (ed) The biochemistry of plants. Academic Press, New York, pp 229–295Google Scholar
  22. Loomis WD, Batteile J (1966) Phytochemistry 5:423–438Google Scholar
  23. Macfarlane JL, Wahleithner JA, Wolstenholme DR (1990) Curr Genet 17:33–40Google Scholar
  24. Marienfeld JR, Abel WO (1988) Mitt Inst Allg Bot Hamburg 22:35–52Google Scholar
  25. Marienfeld JR, Reski R, Friese C, Abel WO (1989) Plant Sci 61:235–244Google Scholar
  26. McCarty DM, Hehman GL, Hauswirth WW (1988) Nucleic Acids Res 16:9873Google Scholar
  27. Michaelis G, Vahrenholz C, Pratje E (1990) Mol Gen Genet 223:211–216Google Scholar
  28. Newton KJ (1988) Annu Rev Plant Physiol Plant Mol Biol 39:503–532Google Scholar
  29. Palmer JD, Shields CR (1984) Nature 307:437–440Google Scholar
  30. Pratje E, Schnierer S, Dujon B (1984) Curr Genet 9:75–82Google Scholar
  31. Pratje E, Vahrenholz C, Bühler S, Michaelis G (1989) Curr Genet 16:61–64Google Scholar
  32. Quagliariello C, Saiardi A, Gallerani R (1990) Curr Genet 18:355–363Google Scholar
  33. Reski R, Abel WO (1985) Planta 165:354–358Google Scholar
  34. Rigby PWJ, Diekmann M, Rhodes C, Berg P (1977) J Mol Biol 113:237–251Google Scholar
  35. Sambrook J, Fritsch EF, Maniatis T (1989): Molecular cloning. Cold Spring Harbor Laboratory, Cold Spring Harbour, New YorkGoogle Scholar
  36. Sanger F, Nicklen S, Coulson AR (1977) Proc Natl Acad Sci USA 74:5463–5467Google Scholar
  37. Schnare MN, Gray MW (1982) Nucleic Acids Res 10:3921–3932Google Scholar
  38. Schuster W, Hiesel R, Isaac PG, Leaver CJ, Brennicke A (1986) Nucleic Acids Res 15:5943–5954Google Scholar
  39. Sloof P, van den Burg J, Voogd A, Benne R (1987) Nucleic Acids Res 15:51–65Google Scholar
  40. Southern EM (1975) J Mol Biol 98:503–517Google Scholar
  41. Vahrenholz S, Pratje E, Michaelis G, Dujon B (1985) Mol Gen Genet 201:213–224Google Scholar
  42. Vieira J, Messing J (1982) Gene 19:259–263Google Scholar
  43. Ward BL, Anderson RS, Bendich AJ (1981) Cell 25:793–803Google Scholar
  44. Yanisch-Perron C, Viera J, Messing J (1985) Gene 33:103–119Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Joachim R. Marienfeld
    • 1
  • Ralf Reski
    • 1
  • Wolfgang O. Abel
    • 1
  1. 1.Institut für Allgemeine BotanikUniversität HamburgHamburg 52Federal Republic of Germany

Personalised recommendations