Eusociality and extraordinary sex ratios in the spider Anelosimus eximius (Araneae: Theridiidae)

Summary

Colonies of Anelosimus eximius in Panama had an average sex ratio of 0.15±sd 0.09, i.e. about five females for each male. The sex ratio in egg sacs reared was even lower (0.08±0.01), as was that of immatures in newly founded colonies (0.12±0.05). The possible mechanisms responsible are discussed. Mature colonies had an average ratio of 17 females and 2 males for each egg sac present (range: 2–91 females, 0.2–8.2 males) and contained a large proportion of females which were not inseminated but which presumably ‘help’. Since both sexes are diploid, arrhenotoky can be ruled out and it is assumed that some females do not come to reproduction, the proportion depending on the availability of resources. This mechanism may enable entire colonies to survive lean times.

This is a preview of subscription content, access via your institution.

References

  1. Aviles L (in press) Sex ratio bias in the social spider Anelosimus eximius, with comments on the possibility of group selection. Am Nat

  2. Brach V (1975) The biology of the social spider Anelosimus eximius. Bull South Calif Acad Sci 74:37–41

    Google Scholar 

  3. Bull JJ (1983) Evolution of sex determining mechanisms. Benjamin Cummings. Menlo Park, Ca

    Google Scholar 

  4. Burgess JW (1976) Social spiders. Sci Am 234:101–106

    Google Scholar 

  5. Buskirk RE (1981) Sociality in the Arachnida. In: Social Insects, vol II, Hermann HR (ed). Academic Press, New York, pp 282–393

    Google Scholar 

  6. Charnov EL (1982) The theory of sex allocation. Princeton University Press, Princeton, NJ

    Google Scholar 

  7. Christenson TE (1984) Behaviour of colonial and solitary spiders of the theridiid species Anelosimus eximius. Anim Behav 32:725–734

    Google Scholar 

  8. Hamilton WD (1964) The genetical evolution of social behaviour, I+II. J Theor Biol 7:1–16, 17–52

    Google Scholar 

  9. Hamilton WD (1967) Extraordinary sex ratios. Science 156:477–488

    Google Scholar 

  10. Harris H, Hopkinson DA (1978) Handbook of enzyme electrophoresis in human genetics. Elsevier, Holland

    Google Scholar 

  11. Krafft B (1970) Les rythmes d'activité d'Agelena consociata Denis: Activite de tissage et activité locomotrice. Biol Gabonica 6:99–130

    Google Scholar 

  12. Kreutzer RD, Galindo P (1980) Isozyme studies of two Melanocoion mosquitoes, Culex ocossa and Cx. panocossa. Mosq News 40:605–613

    Google Scholar 

  13. Kullmann E (1972) Evolution of social behaviour in spiders. Am Zool 12:419–426

    Google Scholar 

  14. Lacy RC (1980) The origin of eusociality in termites: a haploid analogy? Am Nat 116:449–451

    Google Scholar 

  15. Levi HW (1956) The spider genera Neottiura and Anelosimus in America. Trans Am Microsc Soc 82:407–422

    Google Scholar 

  16. Lewis KR, John B (1957) Bivalent structure in Periplaneta americana. Nature 179:973–974

    Google Scholar 

  17. Lubin YD, Robinson MH (1982) Dispersal by swarming in a social spider. Science 216:319–321

    Google Scholar 

  18. Nentwig W (1985) Social spiders catch larger prey: a study of Anelosimus eximius (Araneae: Theridiidae). Behav Ecol Sociobiol 17:79–85

    Google Scholar 

  19. Novitzki E, Peacock WJ, Engel J (1965) Cytological basis of sex ratio in Drosophila pseudoobscura. Science 148:345–357

    Google Scholar 

  20. Overal WL, Ferreira da Silva PaR (1982) Population dynamics of the quasisocial spider Anelosimus eximius (Araneae: Theridiidae). In: Breed MD, Michener CD, Howard HE (eds) The biology of social insects. Westview Press, Boulder Col, pp 181–181

    Google Scholar 

  21. Robinson MH, Robinson B (1970) The prey caught by a sample population of the spider Argiope argentata in Panama: A years' census data. Zool J Linn Soc 49:345–357

    Google Scholar 

  22. Sekiguchi K (1955) Differences in the spinning organs between male and female adult spiders. Sci Rep Tokyo Kyoiku Daigaku Sect B 8:23–32

    Google Scholar 

  23. Shear WA (1970) The evolution of social phenomena in spiders. Bull Br Arachnol Soc 1:65–77

    Google Scholar 

  24. Simon E (1891) Observations biologiques sur les Arachnides. Ann Soc Entomol France 60:5–16

    Google Scholar 

  25. Smith DRR (1985) Population dynamics of Anelosmius eximius (Theridiidae). J Arachnol (in press)

  26. Strassman JE (1984) Female biased sex ratios in social insects lacking morphological castes. Evolution 38:256–266

    Google Scholar 

  27. Syren RM, Luyckx P (1977) Permanent segmental interchange complex in the termite Incisitermes schwarzi. Nature 266:167–168

    Google Scholar 

  28. Tapia Y, De Vries T (1981) Tolerancia y cooperation en la Araña social Anelosimus jucundus des bosque tropical Rio Palenque, Ecuador. Rev Univ Catholica Ecuador 8:51–74

    Google Scholar 

  29. Trivers RL, Hare H (1976) Haplodiploidy and the evolution of the social insects. Science 191:249–263

    Google Scholar 

  30. Vollrath F (1980) Male body size and fitness in the web-building spider Nephila clavipes. Z Tierpsychol 53:61–78

    Google Scholar 

  31. Vollrath F (1982) Colony foundation in a social spider. Z Tierpsychol 60:313–324

    Google Scholar 

  32. Vollrath F, Rohde-Arndt D (1983) Prey capture and feeding in the social spider Anelosimus eximius. Z Tierpsychol 61:334–340

    Google Scholar 

  33. Vollrath F, Windsor D (in press) Subsocial and social Anelosimus: a comparison especially of nest defence. In: Robinson MH (ed) Proceedings IXth Internatl Arachnol Congress

  34. West MJ (1967) Foundress associations in polistine wasps: dominance hierarchies and the evolution of social behaviour. Science 157:1584–1585

    Google Scholar 

  35. White MJD (1973) Animal cytology and evolution. (3rd ed) Cambridge University Press, Cambridge, UK

    Google Scholar 

  36. Wilson EO (1971) The social insects. Belknap Press of Harvard University Press, Cambridge, MA

    Google Scholar 

  37. Wilson DS, Colwell RK (1981) Evolution of sex ratio in structured demes. Evolution 35:882–897

    Google Scholar 

  38. Zimmering S, Sandler L, Nicoletti B (1970) Mechanisms of meiotic drive. Annu Rev Genet 4:409–436

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vollrath, F. Eusociality and extraordinary sex ratios in the spider Anelosimus eximius (Araneae: Theridiidae). Behav Ecol Sociobiol 18, 283–287 (1986). https://doi.org/10.1007/BF00300005

Download citation

Keywords

  • Average Ratio
  • Entire Coloni
  • Mature Coloni
  • Lean Time