Skip to main content
Log in

Deficiency in methionine adenosyltransferase resulting in limited repressibility of methionine biosynthetic enzymes in Aspergillus nidulans

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

In Aspergillus nidulans methionine can be metabolized to cysteine. Mutants blocked in this pathway were selected and divided into three groups representing three separate loci: mecA, mecB and mecC. mecC13 mutant possesses a low level of methionine adenosyltransferase and shows a limited extent of methionine-caused repression of three enzymes of the methionine biosynthetic pathway: sulfate permease, sulfite reductase and 0-acetylhomoserine sulfhydrylase. Intracellular pools of methionine do not differ markedly in the mutant and in wild type, while the S-adenosylmethionine (SAM) pool is decreased in the mutant. Methionine adenosyltransferase was found to be inducible by methionine, SAM is postulated to be involved in regulation of methionine biosynthetic enzymes in A. nidulans. Differences in regulation of methionine biosynthesis in A. nidulans, Escherichia coli and Saccharomyces cerevisiae are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cherest, H., Surdin-Kerjan, Y., Antoniewski, J., de Robichon-Szulmajster, H.: S-adenosylmethionine mediated repression of methionine biosynthetic enzymes in Saccharomyces cerevisiae. J. Bact. (in press) (1973a)

  • Cherest, H., Surdin-Kerjan, Y., Antoniewski, J., de Robichn-Szulmajster, H.: Effects of regulatory mutations upon methionine biosynthesis in Saccharomyces cerevisiae: loci eth2-eth3-eth10. J. Bact. (in press) (1973b)

  • Chou, T.-C., Lombardini, J. B.: A rapid assay procedure for ATP: L-methionine S-adenosyltransferase. Biochim. biophys. Acta (Amst.) 276, 399–406 (1972)

    Article  CAS  Google Scholar 

  • Cove, D. J.: The induction and repression of nitrate reductase in the fungus Aspergillus nidulans. Biochim. biophys. Acta (Amst.) 113, 51–56 (1966)

    Article  CAS  Google Scholar 

  • Ellman, G. L.: A colorimetric method for determining low concentrations of mercaptans. Arch. Biochem. Biophys. 74, 445–450 (1958)

    Article  Google Scholar 

  • Gajewski, W., Litwinska, J.: Methionine loci and their suppressors in Aspergillus nidulans. Molec. gen. Genet. 102, 210–220 (1968)

    Article  CAS  PubMed  Google Scholar 

  • Holloway, C. T., Greene, R. C., Su, C.-H.: Regulation of S-adenosylmethionine synthetase in Escherichia coli. J. Bact. 104, 734–747 (1970)

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randal, R. J.: Protein measurement with the Folin phenol reagent. J. biol. Chem. 193, 265–275 (1951)

    CAS  PubMed  Google Scholar 

  • Mertz, J. E., Spence, K. D.: Methionine adenosyltransferase and ethionine resistance in Saccharomyces cerevisiae. J. Bact. 111, 778–783 (1972)

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paszewski, A., Grabski, J.: β-cystathionase and 0-acetylhomoserine sulfhydrylase as the enzymes of alternative methionine biosynthetic pathways in Aspergillus nidulans. Acta biochim. pol. 20, 159–168 (1973)

    CAS  PubMed  Google Scholar 

  • Pieniążek, N. J., Paszewski, A.: The use of media containing sodium selenate for selecting mutants of Aspergillus nidulans. Aspergillus News Letter 11, 12 (1970)

    Google Scholar 

  • Pieniążek, N. J., Stępień, P. P., Paszewski, A.: An Aspergillus nidulans mutant lacking cystathionine β-synthase: identity of L-serine sulfhydrylase with cystathionine β-synthase and its distinctness from 0-acetyl-L-serine sulfhydrylase. Biochim. biophys. Acta (Amst.) 297, 37–47 (1973)

    Article  Google Scholar 

  • Pigg, C. J., Sorsoli, W. A., Porks, L. W.: Induction of the methionine—activating enzyme in Saccharomyces cerevisiae. J. Bact. 87, 920–923 (1964)

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pontecorvo, G., Roper, J. A., Hemmons, L. M., MacDonald, R. D., Bufton, A. W. J.: The genetics of Aspergillus nidulans. Advanc. Genet. 5, 141–238 (1953)

    Article  CAS  Google Scholar 

  • Sheehan, J. C., Goodman, M., Hess, G. P.: Peptide derivatives containing hydroxyaminoacids. J. Amer. chem. Soc. 78, 1367–1369 (1956)

    Article  CAS  Google Scholar 

  • Siegel, L. M.: A direct microdetermination of sulfide. Analyt. Biochem. 11, 126–132 (1965)

    Article  CAS  PubMed  Google Scholar 

  • Vito, P. C. de, Dreyfuss, J.: Metabolic regulation of adenosine triphosphate sulfurylase in yeast. J. Bact. 88, 1341–1348 (1964)

    PubMed Central  Google Scholar 

  • Wiebers, J. L., Garner, H. R.: Acyl derivatives of homoserine as substrates for homocysteine synthesis in Neurospora crassa, yeast and Escherichia coli. J. biol. Chem. 242, 5644–5649 (1967

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by F. Kaudewitz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pieniążek, N.J., Kowalska, I.M. & Stępień, P.P. Deficiency in methionine adenosyltransferase resulting in limited repressibility of methionine biosynthetic enzymes in Aspergillus nidulans . Molec. Gen. Genet. 126, 367–374 (1973). https://doi.org/10.1007/BF00269446

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00269446

Keywords

Navigation