Skip to main content
Log in

Inhibition of growth of Bacillus subtilis by recombinant plasmid pCED3

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The present study deals with the mechanism by which plasmid pCED3 interferes with the growth of Bacillus subtilis. Plasmid pCED3 was constructed from pUB110 and pBR322 and contains the lacZ gene attached to the B. subtilis tms promoter. Plasmid derivatives that contain mutations in the tms promoter were used to examine the effect of promoter strength on cell growth, plasmid stability, the amount of plasmid DNA per cell and the activities of plasmid-encoded enzymes, i. e., β-galactosidase and kanamycin nucleotidyltransferase (KNT). Efficient lacZ transcription directed from the tms promoter resulted in reduction in growth rate and plasmid stability without an increase in β-galactosidase activity. The amount of plasmid DNA varied between 6.6 and 12.9 pmol per mg cell protein and showed no clear correlation with the strength of the tms promoter. Transcription from the tms promoter inhibited the expression of the plasmid-encoded kanamycin resistance gene resulting in the reduction of both β-galactosidase activity and growth rate in the presence of kanamycin. These results suggest that the negative effect on B. subtilis growth exerted by pCED3 results at least partly from a decrease in kanamycin resistance by plasmid-bearing cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams CW, Hatfield GW (1984) Effects of promoter strength and growth conditions on copy number of transcription-fusion vectors. J Biol Chem 259:7399–7403

    CAS  PubMed  Google Scholar 

  • Contente S, Dubnau D (1979) Marker rescue transformation by linear plasmid in Bacillus subtilis. Plasmid 2:555–571

    Article  CAS  Google Scholar 

  • Corfield VA, Sugrue JA, Thomson JA (1988) Towards an understanding of hybrid plasmid instability in Bacillus subtilis. In: Thomson JA (ed) Recombinant DNA and bacterial fermentation. CRC Press, Boca Raton, pp 23–44

    Google Scholar 

  • Donnelly CE, Sonenshein AL (1982) Genetic fusion of E. coli lac genes to a B. subtilis promoter. In: Ganesan A, Hoch J, Chang S (eds) Molecular cloning and gene regulation in bacilli. Academic Press, New York London, pp 63–72

    Google Scholar 

  • Donnelly CE, Sonenshein AL (1984) Promoter-probe plasmid for Bacillus subtilis. J Bacteriol 157:965–967

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ehrlich SD (1989) Illegitimate recombination in bacteria. In: Berg DE, Howe MM (eds) Mobile DNA. American Society for Microbiology, Washington DC, pp 799–832

    Google Scholar 

  • Ehrlich SD, Noirot P, Petit MA, Janniere L, Michel B, te Riele H (1986) Structural instability of Bacillus subtilis plasmids. In: Setlow IK, Hollander A (eds) Genetic engineering, vol 8. Plenum, New York, pp 71–83

    Chapter  Google Scholar 

  • Gentz R, Langer A, Chang ACY, Cohen SN, Bujard H (1981) Cloning and analysis of strong promoters is made possible by the downstream placement of a RNA termination signal. Proc Natl Acad Sci USA 78:4936–4940

    Article  CAS  Google Scholar 

  • Gruss A, Ehrlich SD (1988) Insertion of foreign DNA into plasmids from Gram-positive bacteria induces formation of high molecular weight plasmid multimers. J Bacteriol 170:1183–1190

    Article  CAS  Google Scholar 

  • Gruss A, Ehrlich SD (1989) The family of highly interrelated single-stranded deoxyribonucleic acid plasmids. Microbiol Rev 53:231–241

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gryczan TJ, Contente S, Dubnau D (1978) Characterization of Staphylococcus aureus plasmids introduced by transformation into Bacillus subtilis. J Bacteriol 134:318–329

    CAS  PubMed  PubMed Central  Google Scholar 

  • Henkin TM, Donnelly CE, Sonenshein AL (1988) Mutations in the consensus sequence in the spacer region of a Bacillus subtilis promoter. In: Ganesan AT, Hoch JA (eds) Genetics biotechnology of bacilli, Academic Press, New York, pp 63–67

    Chapter  Google Scholar 

  • Hotchkiss RD (1974) Models of genetic recombination. Annu Rev Microbiol 28:445–468

    Article  CAS  Google Scholar 

  • Kavenoff R (1972) Characterization of the Bacillus subtilis W23 genome by sedimentation. J Mol Biol 72:801–806

    Article  CAS  Google Scholar 

  • Marston OAF (1986) The purification of eukaryotic polypeptides synthesized in Escherichia coli. Biochem J 240:1–12

    Article  CAS  Google Scholar 

  • Nyberg K (1985) Enrichment of plasmid DNA in cell membranes of Bacillus subtilis. FEMS Microbiol Lett 29:311–316

    Article  CAS  Google Scholar 

  • Nyberg K, Palava A, Palava I (1985) Exceptionally high copy numbers of a staphylococcal plasmid in Bacillus subtilis revealed by a sandwich hybridization technique. FEMS Microbiol Lett 29:305–310

    Article  CAS  Google Scholar 

  • Ogasawara N (1985) Markedly unbiased codon usage in Bacillus subtilis. Gene 40:145–150

    Article  CAS  Google Scholar 

  • Pines O, Inouye M (1986) Antisense RNA regulation in prokaryotes. Trends Genet 2:284–287

    Article  CAS  Google Scholar 

  • Sadaie Y, Kenneth BC, Doi RH (1980) Purification and characterization of a kanamycin nucleotidyltransferase from plasmid pUB110-carrying cells of Bacillus subtilis. J Bacteriol 141:1178–1182

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scheer-Abramowitz JS, Gryczan TJ, Dubnau D (1981) Origin and mode of replication of plasmids pE194 and pUB110. Plasmid 6:67–77

    Article  CAS  Google Scholar 

  • Semon O, Rao Movva N, Smith TF, Alama ME, Davies J (1987) Plasmid-determined bleomycin resistance in Staphylococcus aureus. Plasmid 17:46–53

    Article  CAS  Google Scholar 

  • Shivakumar GA, Dubnau D (1978) Plasmid replication in dna Ts mutants of Bacillus subtilis. Plasmid 1:405–416

    Article  CAS  Google Scholar 

  • Shoham Y, Demain AL (1990a) Effect of medium composition on structural stability of Bacillus subtilis containing a recombinant plasmid. Enzyme Microb Technol 12:330–336

    Article  CAS  Google Scholar 

  • Shoham Y, Demain AL (1990b) Stabilization of a plasmid-encoded LacZ phenotype in Bacillus subtilis. Curr Microbiol 20:373–379

    Article  CAS  Google Scholar 

  • Shoham Y, Demain AL (1991) Kinetics of loss of a recombinant plasmid in Bacillus subtilis (in press)

  • Stueber D, Bujard H (1982) Transcription from efficient promoters can interfere with plasmid replication and diminish expression of plasmid specified genes. EMBO J 1:1399–1404

    Article  CAS  Google Scholar 

  • Viret JF, Alonso JC (1987) Generation of linear multigenome-length plasmid molecules in Bacillus subtilis. Nucl Acids Res 15:6349–6367

    Article  CAS  Google Scholar 

  • Watson TG, Louw ME, Traub JR, Thomson JA (1988) Plasmid instability during scale-up of recombinant DNA-containing bacteria. In: Thomson JA (ed) Recombinant DNA and bacterial fermentation. CRC Press Boca Raton, pp 45–63

    Google Scholar 

  • Wong EM, Muesing MA, Polisky B (1982) Temperature-sensitive copy number mutants of ColE1 are located in an untranslated region of the plasmid genome. Proc Natl Acad Sci USA 79:3570–3574

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shoham, Y., Israeli, E., Sonensheim, A.L. et al. Inhibition of growth of Bacillus subtilis by recombinant plasmid pCED3. Arch. Microbiol. 156, 204–212 (1991). https://doi.org/10.1007/BF00249116

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00249116

Key words

Navigation