Skip to main content
Log in

Analysis of a pleiotropic gene region involved in formation of catalytically active hydrogenases in Alcaligenes eutrophus H16

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

In Alcaligenes eutrophus H16 a pleiotropic DNA-region is involved in formation of catalytically active hydrogenases. This region lies within the hydrogenase gene cluster of megaplasmid pHG1. Nucleotide sequence determination revealed five open reading frames with significant amino acid homology to the products of the hyp operon of Escherichia coli and other hydrogenase-related gene products of diverse organisms. Mutants of A. eutrophus H16 carrying Tn5 insertions in two genes (hypB and hypD) lacked catalytic activity of both soluble (SH) and membrane-bound (MBH) hydrogenase. Immunological analysis showed that the mutants contained SH-and MBH-specific antigen. Growing the cells in the presence of 63Ni2+ yielded significantly lower nickel accumulation rates of the mutant strains compared to the wild-type. Analysis of partially purified SH showed only traces of nickel in the mutant protein suggesting that the gene products of the pleiotropic region are involved in the supply and/or incorporation of nickel into the two hydrogenases of A. eutrophus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bourne HR, Sanders DA, McCormick R (1991) The GTPase superfamily: conserved structure and molecular mechanism. Nature 349: 117–127

    Article  CAS  PubMed  Google Scholar 

  • Bruschi M, Guerlesquin F (1988) Structure, function and evolution of bacterial ferredoxins. FEMS Microbiol Rev 54: 155–176

    Article  CAS  Google Scholar 

  • Chen JC, Mortenson LE (1992) Identification of six open reading frames from a region of the Azotobacter vinelandii genome likely involved in dihydrogen metabolism. Biochim Biophys Acta 1131: 199–202

    Article  CAS  PubMed  Google Scholar 

  • Colbeau A, Richaud P, Toussaint B, Caballero J, Elster C, Delphin C, Smith RL, Chabert J, Vignais PM (1993) Organization of the genes necessary for hydrogenase expression in Rhodobacter capsulatus. Sequence analysis. Identification of two hyp regulatory mutants. Mol Microbiol (in press)

  • Cole ST (1987) Nucleotide sequence and comparative analysis of the frd operon encoding the fumarate reductase of Proteus vulgaris. Eur J Biochem 167: 481–488

    Article  CAS  PubMed  Google Scholar 

  • Cussac V, Ferrero RL, Labigne A (1992) Expression of Helicobacter pylori urease genes in Escherichia coli grown under nitrogenlimiting conditions. J Bacteriol 174: 2466–2473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du L, Stejskal F, Tibelius KH (1992) Characterization of two genes (hup D and hupE) required for hydrogenase activity in Azotobacter chroococcum. FEMS Microbiol Lett 96: 93–102

    Article  CAS  Google Scholar 

  • Eberz G, Friedrich B (1991) Three trans-acting regulatory functions control hydrogenase synthesis in Alcaligenes eutrophus. J Bacteriol 173: 1845–1854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eisenberg D, Schwarz E, Komaromy M, Wall R (1984) Analysis of membrane and surface protein sequences with the hydrophobic moment plot. J Mol Biol 179: 125–142

    Article  CAS  PubMed  Google Scholar 

  • Eitinger T, Friedrich B (1991) Cloning, nucleotide sequence, and heterologous expression of a high-affinity nickel transport gene from Alcaligenes eutrophus. J Biol Chem 266: 3222–3227

    CAS  PubMed  Google Scholar 

  • Friedrich CG, Friedrich B, Bowien B (1981) Formation of enzymes of autotrophic metabolism during heterotrophic growth of Alcaligenes eutrophus. J Gen Microbiol 122: 69–78

    CAS  Google Scholar 

  • Friedrich CG, Schneider K, Friedrich B (1982) Nickel in the catalytically active hydrogenase of Alcaligenes eutrophus. J Bacteriol 152: 42–48

    CAS  PubMed  PubMed Central  Google Scholar 

  • Henikoff S (1984) Unidirectional digestion with exonuclease III creates targeted break points for DNA sequencing. Gene 28: 351–359

    Article  CAS  PubMed  Google Scholar 

  • Hidalgo E, Palacios JM, Murillo J, Ruiz-Argüeso T (1992) Nucleotide sequence and characterization of four additional genes of the hydrogenase structural operon from Rhizobium leguminosarum bv. viciae. J Bacteriol 174: 4130–4139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobi A, Rossmann R, Böck A (1992) The hyp operon gene products are required for the maturation of catalytically active hydrogenase isoenzymes in Escherichia coli. Arch Microbiol 158: 444–451

    Article  CAS  PubMed  Google Scholar 

  • Jones BD, Mobley HLT (1989) Proteus mirabilis urease: nucleotide sequence determination and comparison with jack bean urease. J Bacteriol 171: 6414–6422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kortlüke C, Friedrich B (1992) Maturation of membrane-bound hydrogenase of Alcaligenes eutrophus H16. J Bacteriol 174: 6290–6293

    Article  PubMed  PubMed Central  Google Scholar 

  • Kortlüke C, Hogrefe C, Eberz G, Pühler A, Friedrich B (1987) Genes of lithoautotrophic metabolism are clustered on the megaplasmid pHG1 in Alcaligenes eutrophus. Mol Gen Genet 210: 122–128

    Article  Google Scholar 

  • Kortlüke C, Horstmann K, Schwartz E, Rohde M, Binsack R, Friedrich B (1992) A gene complex coding for the membranebound hydrogenase of Alcaligenes eutrophus H16. J Bacteriol 174: 6277–6289

    Article  PubMed  PubMed Central  Google Scholar 

  • Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157: 105–132

    Article  CAS  PubMed  Google Scholar 

  • Lee MH, Mulrooney SB, Renner MJ, Markowicz Y, Hausinger RP (1992) Klebsiella aerogenes urease gene cluster: sequence of ure D and demonstration that four accessory genes (ureD, ureE, ureF, and ureG) are involved in nickel metallocenter biosynthesis. J Bacteriol 174: 4324–4330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lutz S, Jacobi A, Schlensog V, Böhm R, Sawers G, Böck A (1991) Molecular characterization of an operon (hyp) necessary for the activity of the three hydrogenase isoenzymes in Escherichia coli. Mol Microbiol 5: 123–135

    Article  CAS  PubMed  Google Scholar 

  • Maier T, Jacobi A, Sauter M, Lottspeich F, Böck A (1993) The product of the hypB gene which is required for nickel incorporation into hydrogenases in a novel G protein. J. Bacteriol 175: 630–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mulrooney SB, Hausinger RP (1990) Sequence of the Klebsiella aerogenes urease genes and evidence for accessory proteins facilitating nickel incorporation. J Bacteriol 172: 5837–5843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Normark S, Bergström S, Edlund T, Grundström G, Jaurin B, Lindberg FP, Olsson O (1983) Overlapping genes. Annu Rev Genet 17: 499–525

    Article  CAS  PubMed  Google Scholar 

  • Przybyla AE, Robbins J, Menon N, Peck HD (1992) Structurefunction relationships among the nickel-containing hydrogenases. FEMS Microbiol Rev 88: 109–136

    Article  CAS  Google Scholar 

  • Rey L, Murillo J, Hernando Y, Hidalgo E, Cabrera E, Imperial J, Ruiz-Argüeso T (1993) Molecular analysis of a microaerobically induced operon required for hydrogenase synthesis in Rhizobium leguminosarum bv. viciae. Mol Microbiol (in press)

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Sanger F, Nicklen S, Coulsen AR (1977) DNA-sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlegel HG, Kaltwasser H, Gottschalk G (1961) Ein Submersverfahren zur Kultur wasserstoffoxidierender Bakterien: wachstumsphysiologische Untersuchungen. Arch Mikrobiol 38: 209–222

    Article  CAS  PubMed  Google Scholar 

  • Schneider K, Schlegel HG (1976) Purification and properties of soluble hydrogenase from Alcaligenes eutrophus H16. Biochim Biophys Acta 452: 66–80

    Article  CAS  PubMed  Google Scholar 

  • Tran-Betcke A, Warnecke U, Böcker C, Zaborosch C, Friedrich B (1990) Cloning and nucleotide sequences of the genes for the subunits of NAD-reducing hydrogenase of Alcaligenes eutrophus H16. J Bacteriol 172: 2920–2929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabor S, Richardson CC (1985) A bacteriophage T7 polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci USA 82: 1074–1078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu H-W, Wall JD (1991) Clustering of genes necessary for hydrogen oxidation in Rhodobacter capsulatus. J Bacteriol 173: 2401–2405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dernedde, J., Eitinger, M. & Friedrich, B. Analysis of a pleiotropic gene region involved in formation of catalytically active hydrogenases in Alcaligenes eutrophus H16. Arch. Microbiol. 159, 545–553 (1993). https://doi.org/10.1007/BF00249034

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00249034

Key words

Navigation