Skip to main content
Log in

Glucose transport into the extremely halophilic archaebacteria

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Penetration of glucose into cells of several extremely halophilic archaebacteria of the Halobacterium and Haloferax genera (Halobacterium saccharovorum and Halobacterium salinarium, Haloferax volcanii and Haloferax mediterranei) has been studied. Some characteristics of transport systems of carbohydrate-utilizing halobacteria Halobacterium saccharovorum, Haloferax mediterranei and Haloferax volcanii (pH and temperature optima, stereospecificity, kinetic parameters) have been determined. Inability of H. salinarium cells for active glucose transport has been shown. The dependence of glucose transport on the Na+ ions gradient (on the whole cells and membrane vesicles) has been demonstrated. Cells or membrane vesicles of carbohydrate-utilizing halobacteria grown in media containing this sugar indicated the activation of glucose transport, whereas cells grown in media without sugars did not. This fact has allowed us to conclude that corresponding transport systems are inducible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • FeinJE, MacLeodRA (1975) Characterization of neutral amino acid transport in a marine pseudomonad. J Bacteriol 124: 1177–1190

    CAS  PubMed  PubMed Central  Google Scholar 

  • GonzalesC, GuitierrezC, RamirezC (1978) Halobacterium vallismorits sp. nov., an amylolytic and carbohydrate-metabolizing extremely halophilic bacterium. Can J Microbiol 24: 710–715

    Article  Google Scholar 

  • HartreeGF (1972) Determination of protein: a modification of the Lowry method that give a linear photometric response. Anal Biochem 48: 422–427

    Article  CAS  Google Scholar 

  • IvanovskiRN, KarsanovVV (1982) Succinate uptake by Thiocapsa roseopersicina and Rhodospirillum rubrum. Mikrobiologiya 51: 230–235

    Google Scholar 

  • JavorB, RequadtC, StoeckeniusW (1982) Box-shaped halophilic bacteria. J Bacteriol 151: 1532–1542

    CAS  PubMed  PubMed Central  Google Scholar 

  • JuezG, Rodriguez-ValeraF, VentosaA, KushnerDJ (1986) Haloarcula hispanica sp. nov. and Haloferax gibbonsii sp. nov. Two new species of extreme halophilic archaebacteria. Syst Appl Microbiol 8: 75–79

    Article  Google Scholar 

  • MacDonaldRE, LanyiJK (1975) Light-induced leucin transport in Halobacterium halobium envelope vesicles: a chemiosmotic system. Biochemistry 14: 2882–2889

    Article  CAS  Google Scholar 

  • MacDonaldRE, GreenRV, LanyiJK (1977) Light-activated amino acid transport systems in Halobacterium halobium envelope vesicles: role of chemical and electrical gradients. Biochemistry 16: 3227–3235

    Article  CAS  Google Scholar 

  • MidgleyM, DawesE (1973) The regulation of transport of glucose and methyl-α-glucoside in Pseudomonas aeruginosa. Biochemistry 132: 141–154

    Article  CAS  Google Scholar 

  • OrenA (1983) Halobacterium sodomense sp. nov., a Dead Sea Halobacterium with an extremely high magnesium requirement. Int J Syst Bacteriol 33: 381–386

    Article  Google Scholar 

  • PimenovNV, SeverinaLO, PlakunovVK (1986) Glucose and galactose utilization by extreme halophiles during their growth and pigment production. Microbiology 55: 271–275

    Google Scholar 

  • PimenovNV, SeverinaLO, PlakunovVK (1987) Some characteristics of glucose transport in the extreme halophilic bacterium Halobacterium mediterranei. Microbiology 56: 571–575

    Google Scholar 

  • PimenovNV, SeverinaLO, PlakunovV (1988) Possible mechanisms of glucose and glucose-6-phosphate uptake by cells of extreme halophilic cocci. Microbiology 57: 577–581

    Google Scholar 

  • Rodriguez-ValeraF, Ruiz-BerraqueroF, Ramos-CormenzanaA (1980) Isolation of extremely halophilic bacteria able to grow in defined inorganic media with single carbon sources. J Gen Microbiol 119: 535–538

    Google Scholar 

  • Rodriguez-ValeraF, JuezG, KushnerDJ (1983) Halobacterium mediterranei sp. nov., a new carbohydrate-utilizing extreme halophile. Syst Appl Microbiol 4: 369–381

    Article  CAS  Google Scholar 

  • SeverinaLO, PimenovNV (1988a) Glucose metabolism in extreme halophilic archaebacteria. Microbiology 57: 152–157

    Google Scholar 

  • SeverinaLO, PimenovNV (1988b) Glucose metabolism in Halococcus morrhuae. Microbiology 57: 718–722

    Google Scholar 

  • TindallBJ, RossHNM, GrantWD (1984) Natronobacterium gen. nov. and Natronococcus gen. nov. Two new genera of haloalcalophilic archaebacteria. Syst Appl Microbiol 5: 41–57

    Article  Google Scholar 

  • TomlinsonGA, HochsteinLI (1972) Isolation of carbohydrate-metabolizing extremely halophilic bacteria. Can J Microbiol 18: 698–701

    Article  CAS  Google Scholar 

  • TomlinsonGA, HochsteinLI (1976) Halobacterium saccharovorum sp. nov., a carbohydrate-metabolizing extremely halophilic bacterium. Can J Microbiol 22: 587–591

    Article  CAS  Google Scholar 

  • TorreblancaM, Rodriguez-ValeraF, JuezG, VentosaA, KamekuraM, KatesM (1986) Classification of non-alkaliphilic halobacteria based on numericial taxonomy and polar lipid composition, and description of Haloarcula gen. nov. and Haloferax gen. nov. Syst Appl Microbiol 8: 89–99

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Severina, L.O., Pimenov, N.V. & Plakunov, V.K. Glucose transport into the extremely halophilic archaebacteria. Arch. Microbiol. 155, 131–136 (1991). https://doi.org/10.1007/BF00248606

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00248606

Key words

Navigation