Skip to main content
Log in

Phosphate-limited growth of Chromatium vinosum in continuous culture

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Chromatium vinosum DSM 185 was grown in continuous culture at a constant dilution rate of 0.071 h-1 with sulfide as the only electron donor. The organism was subjected to conditions ranging from phosphate limitation (S R-phosphate=2.7 μM and SR-sulfide=1.8 mM) to sulfide limitation (S R-phosphate=86 μM and SR-sulfide=1.8 mM). At values of S R-phosphate below 7.5 μM the culture was washed out, whereas S R-phosphate above this value resulted in steady states. The saturation constant (K μ) for growth on phosphate was estimated to be between 2.6 and 4.1 μM. The specific phosphorus content of the cells increased from 0.30 to 0.85 μmol P mg-1 protein with increasing S R-phosphate. The specific rate of phosphate uptake increased with increasing S R-phosphate, and displayed a non-hyperbolic saturation relationship with respect to the concentration of phosphate in the inflowing medium. Approximation of a hyperbolic saturation function yielded a maximum uptake rate (V max) of 85 nmol P mg-1 protein h-1, and a saturation constant for uptake (K t) of 0.7 μM. When phosphate was supplied in excess 8.5% of the phosphate taken up by the cells was excreted as organic phosphorus at a specific rate of 8 nmol P mg-1 protein h-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

BChla :

bacteriochlorophyll a

D:

dilution rate; μmax, maximum specific growth rate

μ:

maximum specific growth rate if the substrate were not inhibitory

K μ :

saturation constant for growth on phosphate

V max :

maximum rate of phosphate uptake

K i :

saturation constant for phosphate uptake

K i :

inhibition constant for growth in the presence of sulfide

S R :

concentration of substrate in the inflowing medium

References

  • Bader FB (1982) Kinetics of double-substrate limited growth. In: Bazin MJ (ed) Microbial population dynamics. CRC Press, Boca Raton, pp 1–32

    Google Scholar 

  • Beeftink HH, Gemerden H van (1979) Actual and potential rates of substrate oxidation and product formation in continuous cultures of Chromatium vinosum. Arch Microbiol 121: 161–167

    Article  CAS  Google Scholar 

  • Bergstein T, Henis Y, Cavari BZ (1979) Investigations on the photosynthetic sulfur bacterium Chlorobium phaeobacteroides causing seasonal blooms in Lake Kinneret. Can J Microbiol 25: 999–1007

    Article  CAS  Google Scholar 

  • Burns DJW, Beever RE (1977) Kinetic characterization of the two phosphate uptake systems in the fungus Neurospora crassa. J Bacteriol 132: 511–519

    CAS  PubMed  PubMed Central  Google Scholar 

  • Button DK (1983) Differences between the kinetics of nutrient uptake by micro-organisms, growth and enzyme kinetics. Trends Biochem Sci 8: 121–124

    Article  Google Scholar 

  • Button DK (1985) Kinetics of nutrient limited transport and microbial growth. Microb Rev 49: 270–297

    CAS  Google Scholar 

  • deJonge VN, Villerius LA (1980) Interference of sulfide in inorganic phosphate determination in natural waters. Marine Chem 9: 191–197

    Article  Google Scholar 

  • deWit R, Gemerden H van (1987) Chemolithotrophic growth of the phototrophic sulfur bacterium Thiocapsa roseopersicina. FEMS Microbiol Ecol 45: 117–126

    Article  Google Scholar 

  • Edwards VH (1970) The influence of high substrate concentrations on microbial kinetics. Biotechnol Bioeng 12: 679–712

    Article  CAS  Google Scholar 

  • Ellwood DC, Tempest DW (1972) Effects of environment on bacterial wall content and composition. Adv Microbial Physiol 7: 83–117

    Article  CAS  Google Scholar 

  • Gemerden H van, Beeftink HH (1978) Specific rates of substrate oxidation and product formation in autotrophically growing Chromatium vinosum cultures. Arch Microbiol 119: 135–143

    Article  Google Scholar 

  • Gemerden H van (1980) Survival of Chromatium vinosum at low light intensities. Arch Microbiol 125: 115–121

    Article  Google Scholar 

  • Gemerden H van (1984) The sulfide affinity of phototrophic bacteria in relation to the location of elemental sulfur. Arch Microbiol. 139: 289–294

    Article  Google Scholar 

  • Gogotov IN, Glinskii VP (1973) A comparative study of nitrogen fixation in the purple bacteria. Microbiology 42: 877–880

    Google Scholar 

  • Grillo JF, Gibson J (1979) Regulation of phosphate accumulation in the unicellular cyanobacterium Synechococcus. J Bacteriol 140: 508–517

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guerrero R, Montesinos E, Pedrós-Alió C, Esteve I, Mas J, Gemerden H van, Hofman PAG, Bakker JF (1985) Phototrophic sulfur bacteria in two Spanish lakes: vertical distribution and limiting factors. Limnol Oceanogr 30: 919–931

    Article  CAS  Google Scholar 

  • Guerrero R, Pedrós-Alió C, Esteve I, Mas J (1987) Communities of phototrophic sulfur bacteria in lakes of the Spanish Mediterranean region. Acta Academiae Aboensis 47: 125–151

    Google Scholar 

  • Heda GD, Madigan MT (1986) Aspects of nitrogen fixation in Chlorobium. Arch Microbiol 143: 330–336

    Article  CAS  Google Scholar 

  • Herbert D, Elsworth R, Telling RC (1956) The continuous culture of bacteria: a theoretical and experimental study. J Gen Microbiol 14: 601–622

    Article  CAS  Google Scholar 

  • Keppen OI, Lebedeva NV, Petukhov SA, Rodionov YV (1985) Nitrogenase activity in the green bacterium Chlorobium limicola. Microbiology 54: 28–32

    Google Scholar 

  • Koroleff F (1983) Determination of nutrients. In: Grasshoff K, Erhardt M, Kremling K (eds) Methods of seawater analysis, 2nd edn. Verlag Chemie, Weinheim, pp 125–187

    Google Scholar 

  • Lowry OH, Rosebrough NH, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265–275

    CAS  Google Scholar 

  • Maaløe OG, Kjeldgaard NO (1966) Control of macromolecular synthesis. WA Benjamin, New York

    Google Scholar 

  • Mas J, Gemerden H van (1987) Influence of sulfur accumulation and composition of the sulfur globule on cell volume and buoyant density of Chromatium vinosum. Arch Microbiol 146: 362–369

    Article  CAS  Google Scholar 

  • Megee III RD, Drake JF, Fredrickson AG, Tsuchiya HM (1972) Studies in intermicrobial symbiosis. Saccharomyces cerevisiae and Lactobacillus casei. Can J Microbiol 18: 1733–1742

    Article  Google Scholar 

  • Minnikin DE, Abdolrahimzadeh H (1974) The replacement of phosphatidylethanolamine and acidic phospholipids by an ornithine-amide lipid and a minor phosphorus-free lipid in Pseudomonas fluorescens NCMB 129. FEBS Lett 43: 257–260

    Article  CAS  Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27: 31–36

    Article  CAS  Google Scholar 

  • Ormerod JG, Ormerod KS, Gest H (1961) Light-dependent utilization of organic compounds and photoproduction of molecular hydrogen by photosynthetic bacteria; relationships with nitrogen metabolism. Arch Biochem Biophys 94: 449–463

    Article  CAS  Google Scholar 

  • Pachmayr F (1960) Vorkommen und Bestimmung von Schwefelverbindungen in Mineralwasser. Thesis, University of Munich, Faculty of Life Sciences

  • Parkin TB, Brock TD (1980) Photosynthetic bacterial production in lakes: the effects of light intensity. Limnol Oceanogr 25: 711–718

    Article  Google Scholar 

  • Rhee GY (1973) A continuous culture study of phosphate uptake, growth rate and polyphosphate in Scenedesmus sp. J Phycol 9: 495–506

    CAS  Google Scholar 

  • Riegman R (1985) Phosphate-phytoplankton interactions. PhD Thesis, University of Amsterdam, Faculty of Mathematics and Life Sciences

  • Robertson BR, Button DK (1979) Phosphate-limited continuous culture of Rhodotorula rubra: kinetics of transport, leakage and growth. J Bacteriol 138: 884–895

    CAS  PubMed  PubMed Central  Google Scholar 

  • Standard methods for the examination of water and wastewater, 16th edn (1985) Am Publ Health Assoc, Washington

  • Stal LJ, Gemerden H van, Krumbein WE (1984) The simultaneous assay of chlorophyll and bacteriochlorophyll in natural microbial communities. J Microbiol Methods 2: 295–306

    Article  CAS  Google Scholar 

  • Tilman D, Kilham SS, Kilham P (1982) Phytoplankton community ecology: the role of limiting nutrients. Ann Rev Ecol Syst 13: 349–372

    Article  Google Scholar 

  • Trüper HG, Schlegel HG (1964) Sulphur metabolism in Thiorhodaceae. I. Quantitative measurements on growing cells of Chromatium okenii. Antonie van Leeuwenhoek 30: 225–238

    Article  Google Scholar 

  • Visscher PT, Gemerden H van (1988) Growth of Chlorobium limicola f. thiosulfatophilum on polysulfides. In: Olsen JM, Ormerod JG, Amesz J, Stackebrandt E, Trüper HG (eds) Green photosynthetic bacteria. Plenum Press, New York, pp 287–294

    Chapter  Google Scholar 

  • Visscher PT, Nijburg JW, Gemerden H van (1990) Polysulfide utilization by Thiocapsa roseopersicina. Arch Microbiol 155: 75–81

    Article  CAS  Google Scholar 

  • Zaitseva GN, Gulikova OM, Kondrat'eva EN (1965) Biochemical changes in the cells of Chromatium minutissimum under photoautotrophic and photoheterotrophic conditions of growth. Microbiology 34: 499–504

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mas, J., van Gemerden, H. Phosphate-limited growth of Chromatium vinosum in continuous culture. Arch. Microbiol. 157, 135–140 (1992). https://doi.org/10.1007/BF00245281

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00245281

Key words

Navigation