Aghajanian GK, Wang RY (1977) Habenular and other midbrain raphe afferents demonstrated by a modified retrograde tracing technique. Brain Res 122:229–242
Google Scholar
Arai R, Kimura H, Maeda T (1986) Topographic atlas of monoamine oxidase-containing neurons in the rat brain studied by an improved histochemical method. Neuroscience 19:905–925
Google Scholar
Azmitia EC, Segal M (1978) An autoradiographic analysis of the differential ascending projections of the dorsal and median raphe nuclei in the rat. J Comp Neurol 179:641–668
Google Scholar
Biegon A, Rainbow TC, McEwen BS (1982) Quantitative autoradiography of serotonin receptors in the rat brain. Brain Res 242:197–204
Google Scholar
Blinc M, Dernovsek K, Sket D (1989) In vivo degradation of noradrenaline by MAO-A in locus coeruleus of the rat. Experientia 45:1099–1102
Google Scholar
Butcher SP, Fairbrother IS, Kelly JS, Arbuthnott GW (1990) Effects of selective monoamine oxidase inhibitors on the in vivo release and metabolism of dopamine in the rat striatum. J Neurochem 55:981–988
Google Scholar
Campbell IC, Robinson DS, Lovenberg W, Murphy DL (1979) The effects of chronic regimens of clorgyline and pargyline on monoamine metabolism in the rat brain. J Neurochem 32:49–55
Google Scholar
Colzi A, d'Agostini F, Kettler R, Borroni E, Da Prada M (1990) Effect of selective and reversible MAO inhibitors on dopamine outflow in rat striatum: a microdialysis study. J Neural Transm [Suppl] 32:79–84
Google Scholar
Conrad LC, Leonard CM, Pfaff DW (1974) Connections of the median and dorsal raphe nuclei in the rat: an autoradiographic and degeneration study. J Comp Neurol 156:179–206
Google Scholar
Contestabile A, Flumerfelt BA (1981) Afferent connections of the interpeduncular nucleus and the topographic organization of the habenulo-interpeduncular pathway: an HRP study in the rat. J Comp Neurol 196:253–270
Google Scholar
Dostert PL, Strolin Benedetti M, Tipton KF (1989) Interactions of monoamine oxidase with substrates and inhibitors. Med Res Rev 9:45–89
Google Scholar
De Lorres Arnaiz GR, De Robertis EDP (1962) Cholinergic and non-cholinergic nerve endings in the rat brain. II. Subcellular localization of monoamine oxidase and succinate dehydrogenase. J Neurochem 9:503–508
Google Scholar
Fowler CP, Ross ST (1984) Selective inhibitors of monoamine oxidase A and B: biochemical, pharmacological, and clinical properties. Med Res Rev 4:323–358
Google Scholar
Fowler JS, MacGregor RR, Wolf AP, Arnett CD, Dewey SL, Schlyer D, Christman D, Logan J, Smith M, Sachs H, Aquilonius SM, Bjurling P, Halldin C, Hartvig P, Leenders KL, Lundqvist H, Oreland L, Stålnacke CG, Långström B (1987) Mapping human brain monoamine oxidase A and B with 11C-labeled suicide inactivators and PET. Science 235:481–485
Google Scholar
Garrett MC, Soares-D-Silva P (1990) Role of type A and B monoamine oxidase on the formation of 3,4-dihydroxyphenylacetic acid (DOPAC) in tissues from the brain of the rat. Neuropharmacology 29:875–879
Google Scholar
Gottesfeld Z (1983) Origin and distribution of noradrenergic innervation in the habenula: a neurochemical study. Brain Res 275:299–304
Google Scholar
Greenwald JW (1972) Localization of monoamine oxidase in rat liver mitochondria. Adv Biochem Psychopharmacol 5:207–226
Google Scholar
Groenewegen HJ, Ahlenius S, Haber SN, Kowall NW, Nauta WJH (1986) Cytoarchitecture, fiber connections, and some histochemical aspects of the interpeduncular nucleus in the rat. J Comp Neurol 249:65–102
Google Scholar
Hamill GS, Olschowka JA, Lenn NJ, Jacobowitz DM (1984) The subnuclear distribution of substance P, cholecystokinin, vasoactive intestinal peptide, somatostatin, leu-enkephalin, dopamine-b-hydroxylase, and serotonin in the rat interpeduncular nucleus. J Comp Neurol 226:580–596
Google Scholar
Herkenham M, Nauta WJH (1977) Afferent connections of the habenular nuclei in the rat. A horseradish peroxidase study, with a note on the fiber-of-passage problem. J Comp Neurol 173:123–146
Google Scholar
Herkenham M, Nauta WJH (1979) Efferent connections of the habenular nuclei in the rat. J Comp Neurol 187:19–48
Google Scholar
Inoue O, Tominaga T, Yamasaki T, Kinemuchi H (1985) Radioactive N,N-dimethylphenylethylamine: a selective radio tracer for in vivo measurement of monoamine oxidase-B activity in the brain. J Neurochem 44:210–216
Google Scholar
Johnston JP (1968) Some observations upon a new inhibitor of monoamine oxidase in brain tissue. Biochem Pharmacol 17:1285–1297
Google Scholar
Kato T, Dong B, Ishii K, Kinemuchi H (1986) Brain dialysis: in vivo metabolism of dopamine and serotonin by monoamine oxidase. A but not B in the striatum of unrestrained rats. J Neurochem 46:1277–1282
Google Scholar
Kumagae Y, Matsui Y, Iwata N (1991) Deamination of norepinephrine, dopamine and serotonin by type A monoamine oxidase in discrete regions of rat brain and inhibition by RS-8359. Jpn J Pharmacol 55:121–128
Google Scholar
Levitt P, Pintar JE, Breakefield XO (1982) Immunocytochemical demonstration of monoamine oxidase B in brain astrocytes and serotonergic neurons. Proc Natl Acad Sci USA 79:6385–6389
Google Scholar
Lindvall O, Björklund A, Moore RT, Stenevi U (1974a) Mesencephalic dopamine neurons projecting to neocortex. Brain Res 81:325–331
Google Scholar
Lindvall O, Björklund A, Nobin A, Stenevi U (1974b) The adrenergic innervation of the rat thalamus as revealed by the glyoxylic acid fluorescence method. J Comp Neurol 154:317–348
Google Scholar
Lorez HP, Harvey J, Wright L, Kollar S, Blaszat G, Thomas B, Martin JR, Kettler R, Da Prada M (1990) Moclobemide exhibits neuroprotective effects in hypoxic rat brain. In: Krieglstein H, Oberpichler H (eds) Pharmacology of cerebral ischemia. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 477–483
Google Scholar
MacGregor RR, Halldin C, Fowler JS, Wolf AP, Arnett CD, Langstöm B, Alexoff D (1985) Selective, irreversible in vivo binding of [11C]clorgyline and [11C]-L-deprenyl in mice: potential for measurement of functional monoamine oxidase activity in brain using positron emission tomography. Biochem Pharmacol 34:3207–3210
Google Scholar
Marchand ER, Riley JN, Moore RY (1980) Interpeduncular nucleus afferents in the rat. Brain Res 193:339–352
Google Scholar
May T, Rommelspacher H, Pawlik M (1991) [3H]harman binding experiments. I. A reversible and selective radioligand for monoamine oxidase subtype A in the CNS of the rat. J Neurochem 56:490–499
Google Scholar
Murakami M, Kondoh Y, Weimin Y, Mizusawa S, Nakamichi H, Takahashi K, Sasaki H, Iida H, Miura S, Kanno I, Uemura K (1992) A convenient method for regional monoamine oxidase-A determination by [14C]clorgyline autoradiography. Nucl Med Biol 19:619–626
Google Scholar
Oreland L, Arai Y, Stenström A (1983) The effect of deprenyl (selegyline) on intra- and extraneural dopamine oxidation. Acta Neurol Scand [Suppl] 95:81–85
Google Scholar
Peroutka SJ, Snyder SH (1981) Two distinct serotonin receptors: regional variations in receptor binding in mammalian brain. Brain Res 208:339–347
Google Scholar
Salach JI, Detmer K (1979) The reaction of bovine and rat liver monoamine oxidase with [14C]-clorgyline and [14C]-deprenyl. Mol Pharmacol 16:234–241
Google Scholar
Shibata H, Suzuki T, Matsushita M (1986) Afferent projections to the interpeduncular nucleus in the rat, as studied by retrograde and antegrade transport of wheat germ agglutinin conjugated to horseradish peroxidase. J Comp Neurol 248:272–284
Google Scholar
Shigematsu K, Akiguchi I, Oka N, Kamo H, Matsubayashi K, Kameyama M, Kawamura J, Maeda T (1989) Monoamine oxidase-containing nerve fibers in the major cerebral arteries of rats. Brain Res 497:21–29
Google Scholar
Steinbusch HWM (1981) Distribution of serotonin-immunoreactivity in the central nervous system of the rat — cell bodies and terminals. Neuroscience 6:557–618
Google Scholar
Strolin Benedetti M, Keane PE (1980) Differential changes in monoamine oxidase A and B activity in aging rat brain. J Neurochem 35:1026–1032
Google Scholar
Student AK, Edwards DJ (1977) Subcellular localisation of type A and type B monoamine oxidase in rat brain. Biochem Pharmacol 26:2337–2342
Google Scholar
Tadano T, Satoh S, Satoh N, Kisara K, Arai Y, Kim SK, Kinemuchi H (1989) Potentiation of para-hydroxyamphetamine-induced head-twitch response by inhibition of monoamine oxidase type A in the brain. J Pharmacol Exp Ther 250:254–260
Google Scholar
Takagi H, Shiosaka S, Tohyama M, Senba E, Sakanaka M (1980) Ascending components of the medial forebrain bundle from the lower brain stem in the rat, with special reference to raphe and catecholamine cell groups. A study by the HRP method. Brain Res 193:315–337
Google Scholar
Ungerstedt U (1971) Stereotaxic mapping of the monoamine pathways in the rat brain. Acta Physiol Scand [Suppl] 367:1–48
CAS
PubMed
Google Scholar
Waldmeier PC (1987) Amine oxidases and their endogenous substrates (with special reference to monoamine oxidase and the brain). J Neural Transm [Suppl] 23:55–72
Google Scholar
Waldmeier PC, Delini-Stula A, Maître L (1976) Preferential deamination of dopamine by an A type monoamine oxidase in rat brain. Naunyn Schmiedebergs Arch Pharmacol 292:9–14
Google Scholar
Willoughby J, Glover V, Sandler M (1988) Histochemical localisation of monoamine oxidase A and B in rat brain. J Neural Transm 74:29–42
Google Scholar
Yoshimine T, Hayakawa T, Kato A, Yamada K, Matsumoto K, Ushio Y, Mogami H (1987) Autoradiographic study of regional protein synthesis in focal cerebral ischemia with TCA wash and image subtraction techniques. J Cereb Blood Flow Metab 7:387–393
Google Scholar