The clinical investigator

, Volume 70, Issue 9, pp 780–790 | Cite as

Towards understanding the pathophysiology of chronic rejection

  • P. Häyry
  • A. Mennander
  • S. Yilmaz
  • J. Ustinov
  • A. Räisänen
  • A. Miettinen
  • I. Lautenschlager
  • K. Lemström
  • C. A. Bruggeman
  • T. Paavonen
Guest Lecture, “Gesellschaft für Nephrologie”, 23rd Congress


Chronic allograft rejection is the major reason why allografts are lost. While only 2%-3% of all allografts are lost during the first year to irreversible acute rejection, approximately 6%–7% are lost during each subsequent year to chronic rejection. The major manifestation of chronic rejection in all organs is persistent perivascular inflammation and allograft arteriosclerosis. Bearing this in mind, we have developed a model to investigate the pathophysiology of allograft arteriosclerosis using aortic transplantations between inbred rat strains. The results obtained thus far indicate that several different inflammatory cascades are operative within the vascular wall during allograft arteriosclerosis. The relative importance of these different cascades, and particularly the role of growth factors as final effectors, has not yet been defined. Attempts to suppress allograft arteriosclerosis under experimental conditions have already met with some success: under conditions where no immunosuppression is provided we have been able to delay the process by at least 3 months, though we have not been able to block it indefinitely. It may be expected, however, that once the inflammatory cascades leading to smooth muscle cell replication in the allograft media and their influx into the intima are better defined, more specific approaches to the inhibition of allograft arteriosclerosis will be developed.

Key words

Allograft arteriosclerosis Chronic allograft rejection Growth factors Smooth muscle cell replication 



antilymphocyte globulin








polymerase chain reaction


plaque-forming units


rat cytomegalovirus




thromboxane B2


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alonso DR, Storek PK, Minick R (1977) Studies on the pathogenesis of atheroarteriosclerosis induced in rabbit cardiac allografts by the synergy of graft rejection and hypercholesterolemia. Am J Pathol 87:415–435.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Billingham ME (1987) Cardiac transplant athersoclerosis. Transplant Proc 19 [Suppl 5]:19–25.PubMedGoogle Scholar
  3. 3.
    Bruggeman CA, Meijer H, Bosnian F, van Boven CPA (1985) Biology of RCMV infection. Intervirology 24:1–9.CrossRefGoogle Scholar
  4. 4.
    Castellot JJ Jr, Choa J, Lormeau J-C, Petitou M, Sache E, Karnovsky MJ (1986) Structural determinants of the capacity of heparin to inhibit the proliferation of vascular smooth muscle cells. II. Evidence for a pentasaccaride sequence that contains a 3-O-sulfate group. J Cell Biol 102:1979–1984.CrossRefGoogle Scholar
  5. 5.
    Claesson K, Mjörnstedt L, Klareskog L, Larsson E, Olausson M, Söderström T (1988) Morphology of rat cardiac allografts with permanent survival induced by antithymocyte globulin. Scand J Immunol 27:171–179.CrossRefGoogle Scholar
  6. 6.
    Clowes AW, Clowes MM (1989) Inhibition of smooth muscle cell proliferation by heparin molecules. Transplant Proc 21:3700–3701.PubMedGoogle Scholar
  7. 7.
    Croker BP, Salomon DR (1989) Pathology of renal allograft. In: Tisher CC, Brenner BM (eds) Renal pathology, vol 2. Lippincott, Philadelphia, pp 1518–1551.Google Scholar
  8. 8.
    Demetris AJ, Zerbe T, Banner B (1989) Morphology of solid organ allograft arteriopathy: identification of proliferating intimal cell populations. Transplant Proc 21:3667–3669.PubMedGoogle Scholar
  9. 9.
    Grattan MT, Moreno-Cabral CE, Starnes VA, Oyer PE, Stinson EB, Shumway NE (1989) Cytomegalovirus infection is associated with cardiac allograft rejection and atherosclerosis. JAMA 261:3561–3566.CrossRefGoogle Scholar
  10. 10.
    Hruban RH, Beschomer WE, Baumgartner WA, Augustine SM, Ren H, Reitz BA, Hutchins GM (1990) Accelerated arteriosclerosis in heart transplant recipients is associated with a T-lymphocyte mediated endothelialitis. Am J Pathol 137:871–882.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Isoniemi H, Tikkanen MJ, Ahonen J, Häyry P (1991) Renal allograft immunosuppression. IV Comparison of lipid and lipoprotein profiles in blood using double and triple immunosuppressive drug combinations. Transpl Int 4:130–135.PubMedGoogle Scholar
  12. 12.
    Laden AMK, Sinclair RA (1971) Thickening of arterial intima in rat cardiac allografts. Am J Pathol 63:69–76.PubMedPubMedCentralGoogle Scholar
  13. 13.
    McDonald K, Rector T, Braunlin E, Kubo SH, Olivari MT (1989) Association of coronary artery disease in cardiac transplant recipient with cytomegalovirus infection. Am J Cardiol 64:359–362.CrossRefGoogle Scholar
  14. 14.
    Mennander A, Tiisala S, Halttunen J, Yilmaz S, Paavonen T, Häyry P (1991) Chronic rejection in rat aortic allografts. An experimental model for transplant arteriosclerosis. Arteriosclerosis Thrombosis 11:671–680.CrossRefGoogle Scholar
  15. 15.
    Mennander A, Tiisala S, Paavonen T, Halttunen J, Häyry P (1991) Chronic rejection in rat aortic allografts. II. Administration of cyclosporine induces accelerated arteriosclerosis. Transpl Int 4:173–179.PubMedGoogle Scholar
  16. 16.
    Oguma S, Belle S, Starzl TE, Demetris AJ (1989) A histometric analysis of chronically rejected human liver allografts: insights into the mechanisms of bile duct loss: direct immunologic and ischemic factors. Hepatology 9:204–209.CrossRefGoogle Scholar
  17. 17.
    Opelz G (1989) Effect of HLA matching in heart transplantation. Transplant Proc 21:794–796.PubMedGoogle Scholar
  18. 18.
    Porter KA, Calne RY, Zukoski CF (1964) Vascular and other changes in 200 canine renal homotransplants treated with immunosuppressive drugs. Lab Invest 13:809–824.Google Scholar
  19. 19.
    Rose AG, Uys CJ (1990) Pathology of graft atherosclerosis (chronic rejection). In: Cooper DKC, Novitsky D (eds) Transplantation and replacement of thoracic organs. Kluwer Academic, Boston.Google Scholar
  20. 20.
    Taylor DO, Thompson JA, Hastillo A, Barnhart G, Rider S, Lower RR, Hess ML (1989) Hyperlipidemia after clinical heart transplant. J Heart Transplant 8:209–213.PubMedGoogle Scholar
  21. 21.
    Terasaki PI, Park MS, Takemoto S, Cecka JM, Clark B, Corcoran S, Cicciarelli J, Barbetti A, Yuge J, Carnahan E (1989) Overview and epitope matching. In: Terasaki PI (ed) Clinical transplants 1989. UCLA Tissue Typing Laboratory, Los Angeles, pp 499–516.Google Scholar
  22. 22.
    Thyberg J, Hedin U, Sjölund M, Palmberg L, Bottger BA (1990) Regulation of differentiated properties and proliferation of arterial smooth muscle cells. Arteriosclerosis 10:966–990.CrossRefGoogle Scholar
  23. 23.
    White E, Hildemann WH, Mullen Y (1969) Chronic kidney allograft reactions in rats. Transplantation 8:602–617.CrossRefGoogle Scholar
  24. 24.
    Yilmaz S, Taskinen E, Paavonen T, Mennander A, Häyry P (1992) Chronic rejection of rat renal allograft. I. Histological differentiation between chronic rejection and cyclosporine nephrotoxicity. Transpl Int 5:85–95.PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • P. Häyry
    • 1
  • A. Mennander
    • 1
  • S. Yilmaz
    • 1
  • J. Ustinov
    • 1
  • A. Räisänen
    • 1
  • A. Miettinen
    • 1
  • I. Lautenschlager
    • 1
  • K. Lemström
    • 1
  • C. A. Bruggeman
    • 1
  • T. Paavonen
    • 1
  1. 1.Transplantation LaboratoryUniversity of HelsinkiFinland

Personalised recommendations