Skip to main content
Log in

Antitumor activity and mechanism of action of the marine compound girodazole

  • Preclinical Studies
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Girodazole, a new marine compound has been isolated from the sponge Pseudaxinyssa cantharella. Girodazole is active in vivo on several murine grafted tumors including leukemias (P388, L1210, i.p./i.p.) and solid tumors (MA 16/C mammary adenocarcinoma, M5076 histiocytosarcoma, s.c./i.v.). In addition, girodazole has identical cytotoxic properties in vitro on P388 and P388/DOX cells and retains antitumor activity in vivo on P388/DOX. Girodazole has a unique chemical structure different from those of known anticancer agents and of new compounds undergoing clinical trials. Biochemical studies indicate that girodazole inhibits protein synthesis during the elongation/termination steps. Toxicological studies have been done in mice and in dogs and did not reveal any major toxic effect which could preclude administration in patients. Girodazole is now undergoing phase I clinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Rinehart KL, Shaw PD, Shield LS, Gloer JB, Harbour GC, Koker MES, Samain D, Schwartz RE, Tymiak AA, Weller DL, Carter GT, Munrom HG, Hughes RG, Renis HE, Swynenberg EB, Stringfellow DA, Vavra JJ, Coats JH, Zurenko GE, Kuentzel SL, Li LH, Bakus GJ, Brusca RC, Craft LL, Young DN, Connor JL. Marine natural products as sources of antiviral, antimicrobial and antineoplastic agents. Pure Appl Chem 53: 795–817, 1981

    Google Scholar 

  2. Bergmann W, Feeney RJ. Contributions to the study of marine products. XXXII. The nucleosides of sponges. J Org Chem 16: 981–987, 1951

    Google Scholar 

  3. Rinehart KL, Gloer JB, Wilson GR, Hughes RG, Li LH, Renis HE, McGovren JP. Antiviral and antitumor compounds from tunicates. Fed Proc 42: 87–90, 1983

    Google Scholar 

  4. Chun HG, Davies B, Hoth D, Suffness M, Plowman J, Flora K, Grieshaber C, Leyland-Jones B. Didemnin B: The first marine compound entering clinical trials as an antineoplastic agent. Investigational New Drugs 4: 279–284, 1986

    Google Scholar 

  5. Burres NS, Clement JJ. Antitumor activity and mechanism of action of the novel marine natural products Mycalamide -A and-B and Onnamide. Cancer Res 49: 2935–2940, 1989

    Google Scholar 

  6. Burres NS, Sazesh S, Gunawardana GP, Clement JJ. Antitumor activity and nucleic acid binding properties of Dercitin, a new acridine alkaloid isolated from a marine dercitus species sponge. Cancer Res 49: 5267–5274, 1989

    Google Scholar 

  7. Pettit GR, Kamano Y, Brown P, Gust D, Inoue M, Herald CL. Structure of the cyclic peptide dolastatin 3 from Dolabella auricularia. J Am Chem Soc 104: 905–907, 1982

    Google Scholar 

  8. Pettit GR, Herald CL, Doubek DL, Herald DL. Isolation and structure of bryostatin 1. J Am Chem Soc 104: 6846–6848, 1982

    Google Scholar 

  9. Ahond A, Bedoya Zurita M, Colin M, Fizames C, Laboute P, Lavelle F, Laurent D, Poupat C, Pusset J, Pusset M, Thoison O, Potier P. La girolline, nouvelle substance antitumorale extraite de l'éponge Pseudaxinyssa cantharella. CR Acad Sci Paris 307 (II): 145–148, 1988

    Google Scholar 

  10. Johnson RK, Chitnis MP, Embrey WM, Gregory EB. In vivo characteristics of resistance and cross-resistance of an adriamycin-resistant subline of P388 leukemia. Cancer Treat Rep 62: 1535–1547, 1978

    Google Scholar 

  11. Geran RI, Greenberg NH, MacDonald MM, Schumacher AM, Abbott BJ. Protocols for screening chemical agents and natural products against animal tumors and other biological systems (third edition). Cancer Chemother Rep, part 3: 1–103, 1972

    Google Scholar 

  12. Gookin RMC. Methods in Molecular Biology: Nucleic-Acids. Humana Press, 1984

  13. Zucker WV, Schulman HM. Stimulation of globin chain initiation by hemin in the reticulocyte cell free system. Proc Natl Acad Sci USA 59: 582–589, 1968

    Google Scholar 

  14. Jackson RJ, Hunt, T. Preparation and use of nuclease-treated rabbitreticulocyte lysates for the translation of eukaryotic messenger RNA. Methods in Enzymology 96: 50–74, 1983

    Google Scholar 

  15. Pelham HRB, Jackson RJ. An efficient mRNA-dependent translation system from reticulocyte lysates. Eur J Biochem 67: 247–256, 1976

    Google Scholar 

  16. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685, 1970

    PubMed  Google Scholar 

  17. Schabel FM, Griswold DP, Laster WR. Quantitative evaluation of anticancer agent activity in experimental animals. Pharmacol Ther 1: 411–435, 1977

    Google Scholar 

  18. Corbett TH, Griswold DP, Roberts BJ, Peckham JC, Schabel FM. Biology and therapeutic response of a mouse mammary adenocarcinoma (16/C) and its potential as a model for surgical adjuvant chemotherapy. Cancer Treat Rep 62: 1471–1488, 1978

    Google Scholar 

  19. Talmadge JE, Key ME, Hart IR. Characterization of a murine ovarian-reticulum cell sarcoma of histiocytic origin. Cancer Res 41: 1271–1280, 1981

    Google Scholar 

  20. Langdon SP, Gescher A, Hickman JA, Stevens MFG. The chemosensitivity of a new experimental model — the M5076 reticulum cell sarcoma. Eur J Cancer Clin Oncol 20: 699–705, 1984

    Google Scholar 

  21. Nicolson GL. Cancer metastasis. Organ colonization and the cell-surface properties of malignant cells. Biochim. Biophys Acta 695: 113–176, 1982

    Google Scholar 

  22. Moldave K. Eukaryotic protein synthesis Ann Rev. Biochem 54: 1109–1149, 1985

    Google Scholar 

  23. Corbett TH, Valeriote FA, Baker LH. Is the P388 murine tumor no longer adequate as a drug discovery model? Investigational New Drugs 5: 3–20, 1987

    Google Scholar 

  24. Atassi G. Do we need new chemosensitive experimental models? Eur J Cancer Clin Oncol 20: 699–705, 1980

    Google Scholar 

  25. Bissery MC, Bayssas M, Lavelle F. Solid tumor activity of RP 49532, a marine antitumor agent (Abstract). Proc Am Assoc Cancer Res 30: 580, 1989

    Google Scholar 

  26. Lavelle F, Fizames C, Ahond A, Poupat C, Curaudeau A. Experimental properties of RP 49532, a new antitumor marine compound (Abstract). Proc Am Assoc Cancer Res 30: 583, 1989

    Google Scholar 

  27. Staquet MJ, Byar DP, Green SB, Rozencweig M. Clinical predictivity of transplantable tumor systems in the selection of new drugs for solid tumors: rationale for a three-stage strategy. Cancer Treat Rep 67: 753–765, 1983

    Google Scholar 

  28. Armand JP, Herrera A. Interface pre-clinique-Phase I des nouvelles molécules en cancérologie. In: Strauch G, Spriet A (eds) Pharmacologie Clinique: Actualités et Perspectives. Les Editions INSERM (Vol. 156), Paris, pp. 195–206, 1987

    Google Scholar 

  29. Montgomery JA, Johnston TP, Shealy YF. Drugs for neoplastic diseases. In: Burger A (ed) Medicinal Chemistry. Wiley-Interscience, New York, 1970, Third Edition, Part I, pp 680–783

    Google Scholar 

  30. Uehara Y, Hori M, Umezawa H. Negamycin inhibits termination of protein synthesis directed by phage f 2 RNA in vitro. Biochim. Biophys. Acta 374: 82–95, 1974

    Google Scholar 

  31. Vrijsen R, Vanden Berghe DA, Vlietinck AJ, Boeye A. Lycorine: an eukaryotic termination inhibitor? J Biol Chem 261: 505–507, 1986

    Google Scholar 

  32. Huang MT. Harringtonine, an inhibitor of initiation of protein biosynthesis. Mol Pharmacol 11: 511–519, 1975

    Google Scholar 

  33. Dawkins AW. Phytotoxic compounds produced by Fusarium equiseti. II. The chemistry of diacetoxyscirpenol. J Chem Soc (C): 116–123, 1966

  34. Kupchan SM, Britton RW, Ziegler MF, Sigel CW. Bruceantin, a new potent antileukemic simaroubolide from Brucea antidysenterica. J Org Chem 38: 178–179, 1973

    Google Scholar 

  35. Ottenheijm HCJ, Van der Broek LAGM. The development of sparsomycin as an anti-tumor drug. Anti-Cancer Drug Design 2: 333–337, 1988

    Google Scholar 

  36. Arseneau JC, Wolter JM, Kuperminc M, Ruckdeschel JC. A phase II study of bruceantin (NSC-165, 563) in advanced malignant melanoma. Investigational New Drugs 1: 239–242, 1983

    Google Scholar 

  37. Adler SS, Lowenbraun S, Birch B, Jarrell R, Garrard J. Anguidine: a broad phase II study of the Southeastern Cancer Study Group. Cancer Treat Rep 68: 423–425, 1984

    Google Scholar 

  38. Liao LL, Kupchan SM, Horwitz SB. Mode of action of the antitumor compound bruceantin, an inhibitor of protein synthesis. Mol Pharmacol 12: 167–176, 1976

    Google Scholar 

  39. Liao LL, Grollman AP, Horwitz SB Mechanism of action of the 12, 13-epoxy trichothecene anguidine, an inhibitor of protein synthesis. Biochim Biophys Acta 454: 273–284, 1976

    Google Scholar 

  40. Schabel FM, Skipper HE, Trader MW, Laster WM, Griswold DP, Corbett TH. Establishment of crossresistance profiles for new agents. Cancer Treat Rep 67: 905–922, 1983

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lavelle, F., Zerial, A., Fizames, C. et al. Antitumor activity and mechanism of action of the marine compound girodazole. Invest New Drugs 9, 233–244 (1991). https://doi.org/10.1007/BF00176976

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00176976

Key words

Navigation