Journal of Molecular Evolution

, Volume 40, Issue 6, pp 622–628 | Cite as

Improved dating of the human/chimpanzee separation in the mitochondrial DNA tree: Heterogeneity among amino acid sites

  • Jun Adachi
  • Masami Hasegawa
Article

Abstract

The internal branch lengths estimated by distance methods such as neighbor joining are shown to be biased to be short when the evolutionary rate differs among sites. The variable-invariable model for site heterogeneity fits the amino acid sequence data encoded by the mitochondrial DNA from Hominoidea remarkably well. By assuming the orangutan separation to be 13 or 16 Myr old, a maximum-likelihood analysis estimates a young date of 3.6 ± 0.6 or 4.4 ± 0.7 Myr (±1 SE) for the human/chimpanzee separation, and these estimates turn out to be robust against differences in the assumed model for amino acid substitutions. Although some uncertainties still exist in our estimates, this analysis suggests that humans separated from chimpanzees some 4–5 Myr ago.

Key words

Mitochondrial DNA Hominoidea Molecular clock Maximum likelihood Site heterogeneity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adachi J, Hasegawa M (1992) Computer science monographs, No. 27. MOLPHY: programs for molecular phylogenetics, I.—PROTML: maximum likelihood inference of protein phylogeny. Institute of Statistical Mathematics, TokyoGoogle Scholar
  2. Adachi J, Cao Y, Hasegawa M (1993) Tempo and mode of mitochondrial DNA evolution in vertebrates at the amino acid sequence level: rapid evolution in warm-blooded vertebrates. J Mol Evol 36:270–281Google Scholar
  3. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Contr AC-19:716–723Google Scholar
  4. Anderson S, Bankier AT, Barrell BG, de Bruijn MHL, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith ALH, Staden R, Young IG (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–464Google Scholar
  5. Andrews P, Cronin JE (1982) The relationships of Sivapithecus and Ramapithecus and the evolution of the orang-utan. Nature 297:541–546Google Scholar
  6. Andrews P (1992) Evolution and environment in the Hominoidea. Nature 360:641–646Google Scholar
  7. Bailey WJ, Hayasaka K, Skinner CG, Kehoe S, Sieu LC, Slightom JL, Goodman M (1992) Reexamination of the African hominoid trichotomy with additional sequences from the primate β-globin gene cluster. Mol Phyl Evol 1:97–135Google Scholar
  8. Brown WM, Prager EM, Wang A, Wilson AC (1982) Mitochondrial DNA sequences of primates: tempo and mode of evolution. J Mol Evol 18:225–239Google Scholar
  9. Caccone A, Powell JR (1989) DNA divergence among hominoids. Evolution 43:925–942Google Scholar
  10. Cann RL, Stoneking M, Wilson AC (1987) Mitochondrial DNA and human evolution. Nature 325:31–36Google Scholar
  11. Cao Y, Adachi J, Yano T, Hasegawa M (1994a) Phylogenetic place of guinea pigs: no support of the rodent polyphyly hypothesis from maximum likelihood analyses of multiple protein sequences. Mol Biol Evol 11:593–604Google Scholar
  12. Cao Y, Adachi J, Janke A, Pääbo S, Hasegawa M (1994b) Phylogenetic relationships among eutherian orders estimated from inferred sequences of mitochondrial proteins: instability of a tree based on a single gene. J Mol Evol 39:519–527Google Scholar
  13. Dayhoff MO, Schwartz RM, Orcutt BC (1978) A model of evolutionary change in proteins. In: Dayhoff MO (ed) Atlas of protein sequence and structure, vol 5, suppl 3. National Biomedical Research Foundation, Washington DC, pp 345–352Google Scholar
  14. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376Google Scholar
  15. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791Google Scholar
  16. Fitch WM, Markowitz E (1970) An improved method for determining codon variability in a gene and its application to the rate of fixations of mutations in evolution. Biochem Genet 4:579–593Google Scholar
  17. Goldman N (1993) Statistical tests of models of DNA substitution. J Mol Evol 36:182–198Google Scholar
  18. Gonzalez IL, Sylvester JE, Smith TF, Stambolian D, Schmickel RD (1990) Ribosomal RNA gene sequences and hominoid phylogeny. Mol Biol Evol 7:203–219Google Scholar
  19. Hasegawa M, Kishino H, Yano T (1985) Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174Google Scholar
  20. Hasegawa M, Kishino H, Yano T (1987) Man's place in Hominoidea as inferred from molecular clocks of DNA. J Mol Evol 26:132–147Google Scholar
  21. Hasegawa M, Kishino H, Hayasaka K, Horai S (1990) Mitochondrial DNA evolution in primates: transition rate has been extremely low in lemur. J Mol Evol 31:113–121Google Scholar
  22. Hasegawa M (1991) Molecular phylogeny and man's place in Hominoidea. J Anthrop Soc Nippon 99:49–61Google Scholar
  23. Hasegawa M, Horai S (1991) Time of the deepest root for polymorphism in human mitochondrial DNA. J Mol Evol 32:37–42Google Scholar
  24. Hasegawa M, Cao Y, Adachi J, Yano T (1992) Rodent polyphyly? Nature 355:595–595Google Scholar
  25. Hasegawa M, Hashimoto T, Adachi J, Iwabe N, Miyata T (1993a) Early divergences in the evolution of eukaryotes: ancient divergence of Entamoeba that lacks mitochondria revealed by protein sequence data. J Mol Evol 36:380–388Google Scholar
  26. Hasegawa M, Di Rienzo A, Kocher TD, Wilson AC (1993b) Toward a more accurate time scale for the human mitochondrial DNA tree. J Mol Evol 37:347–354Google Scholar
  27. Hashimoto T, Otaka E, Adachi J, Mizuta K, Hasegawa M (1993) The giant panda is most close to a bear, judged by α- and β-hemoglobin sequences. J Mol Evol 36:282–289Google Scholar
  28. Hashimoto T, Nakamura Y, Nakamura F, Shirakura T, Adachi J, Goto N, Okamoto K, Hasegawa M (1994) Protein phylogeny gives a robust estimation for early divergences of eukaryotes: phylogenetic place of a mitochondria-lacking protozoan, Giardia lamblia. Mol Biol Evol 11:65–71Google Scholar
  29. Hayasaka K, Gojobori T, Horai S (1988) Molecular phylogeny and evolution of primate mitochondrial DNA. Mol Biol Evol 5:626–644Google Scholar
  30. Horai S, Satta Y, Hayasaka K, Kondo R, Inoue T, Ishida T, Hayashi S, Takahata N (1992) Man's place in Hominoidea revealed by mitochondrial DNA genealogy. J Mol Evol 35:32–43; Erratum 37:89–89 (1993)Google Scholar
  31. Jones DT, Taylor WR, Thomton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8:275–282Google Scholar
  32. Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism, vol III. Academic Press, New York, pp 21–132Google Scholar
  33. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120Google Scholar
  34. Kimura M (1983) The neutral theory of molecular evolution. Cambridge Univ Press, CambridgeGoogle Scholar
  35. Kishino H, Hasegawa M (1989) Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea. J Mol Evol 29:170–179Google Scholar
  36. Kishino H, Hasegawa M (1990) Converting distance to time: an application to human evolution. Methods Enzymol 183:550–570Google Scholar
  37. Kishino H, Miyata T, Hasegawa M (1990) Maximum likelihood inference of protein phylogeny and the origin of chloroplasts. J Mol Evol 30:151–160Google Scholar
  38. Kocher TD, Wilson AC (1991) Sequence evolution of mitochondrial DNA in humans and chimpanzees: control region and a protein-coding region. In: Osawa S, Honjo T (eds) Evolution of life: fossils, molecules, and culture. Springer-Verlag, Tokyo, pp 391–413Google Scholar
  39. Maeda N, Wu C-I, Bliska J, Reneke J (1988) Molecular evolution of intergenic DNA in higher primates: pattern of DNA changes, molecular clock, and evolution of repetitive sequences. Mol Biol Evol 5:1–20Google Scholar
  40. McCrossin ML, Benefit BR (1993) Recently recovered Kenyapithecus mandible and its implications for great ape and human origins. Proc Natl Acad Sci USA 90:1962–1966Google Scholar
  41. Miyamoto MM, Slightom JL, Goodman M (1987) Phylogenetic relations of humans and African apes from DNA sequences in the ωη-globin region. Science 238:369–373Google Scholar
  42. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New YorkGoogle Scholar
  43. Pesole G, Ebisá E, Preparata G, Saccone C (1992) The evolution of the mitochondrial D-loop region and the origin of modern man. Mol Biol Evol 9:587–598Google Scholar
  44. Pilbeam D (1988) Human origins and evolution. In: Fabian AC (ed) Origins. Cambridge University Press, Cambridge, pp 89–114Google Scholar
  45. Reeves JH (1992) Heterogeneity in the substitution process of amino acid sites of proteins coded for by mitochondrial DNA. J Mol Evol 35:17–31Google Scholar
  46. Ruvolo M, Disotell TR, Allard MW, Brown WM, Honeycutt RL (1991) Resolution of the African hominoid trichotomy by use of a mitochondrial gene sequence. Proc Natl Acad Sci USA 88:1570–1574Google Scholar
  47. Ruvolo M, Zehr S, von Dornum M, Pan D, Chang B, Lin J (1993) Mitochondrial COII sequences and modern human origins. Mol Biol Evol 10:1115–1135Google Scholar
  48. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425Google Scholar
  49. Sarich VM, Wilson AC (1967a) Immunological time scale for hominid evolution. Science 158:1200–1203Google Scholar
  50. Sarich VM, Wilson AC (1967b). Rates of albumin evolution in primates. Proc Natl Acad Sci USA 58:142–148Google Scholar
  51. Sibley CG, Ahlquist JE (1984) The phylogeny of the hominoid primates, as indicated by DNA-DNA hybridization. J Mol Evol 20:2–15Google Scholar
  52. Sibley CG, Ahlquist JE (1987) DNA hybridization evidence of hominoid phylogeny: results from an expanded data set. J Mol Evol 26:99–121Google Scholar
  53. Sibley CG, Comstock JA, Ahlquist JE (1990) DNA hybridization evidence of hominoid phylogeny: a reanalysis of the data. J Mol Evol 30:202–236Google Scholar
  54. Sidow A, Nguyen T, Speed TP (1992) Estimating the fraction of invariable codons with a capture-recapture method. J Mol Evol 35: 253–260Google Scholar
  55. Takahata N (1985) Population genetics of extranuclear genomes: a model and review. In: Ohta T, Aoki K (eds) Population genetics and molecular evolution. Japan Sci Soc Press, Tokyo, pp 195–212Google Scholar
  56. Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526Google Scholar
  57. Thorne AG, Wolpoff MH (1992) The multiregional evolution of humans. Sci Am 266(4):76–83Google Scholar
  58. Ueda S, Watanabe Y, Saitou N, Omoto K, Hayashida H, Miyata T, Hisajima H, Honjo T (1989) Nucleotide sequences of immunoglobulin-epsilon pseudogenes in man and apes and their phylogenetic relationships. J Mol Biol 205:85–90Google Scholar
  59. Yang Z (1993) Maximum-likelihood estimation of phylogeny from DNA sequences when substitution rates differ over sites. Mol Biol Evol 10:1396–1401Google Scholar

Copyright information

© Springer-Verlag New York Inc 1995

Authors and Affiliations

  • Jun Adachi
    • 1
  • Masami Hasegawa
    • 1
    • 2
  1. 1.Department of Statistical ScienceThe Graduate University for Advanced StudiesTokyoJapan
  2. 2.The Institute of Statistical MathematicsTokyoJapan

Personalised recommendations