Skip to main content
Log in

Discrimination of normal and transformed cells in vitro by cytologic and morphologic analysis

  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Malignant A-549 lung carcinoma and adenovirus-12 SV40 hybrid virus transformed non-tumorigenic human bronchial epithelial cells (BEAS-2B) were objectively discriminated from normal bronchial epithelial (BE) cells on the basis of Papanicolaou stained nuclear features (e.g. shape, chromatin texture, hyperchromasia) and nucleolar morphology (e.g. number per cell, irregular contours). Morphometric analysis indicated that significant differences in cellular morphology existed between BE, BEAS-2B, and A-549 cells. Similar analyses of transformed, tumorigenic cell lines demonstrated that nuclear features (i.e., chromatin texture, clearing of parachromatin, hyperchromasia, variation in thickness of the nuclear envelope, sharp indentations in the nuclear envelope), and nucleolar features (i.e., degree of roundness, presence of angular projections, number per cell) discriminated chemically and virally transformed cells from spontaneously transformed cells. Nuclear and nucleolar features were correlated with the growth rate of tumorigenic cell lines. These analytical approaches will be helpful in studies of the effects of various factors (e.g. vitamin A, phorbol ester, oncogene transfection) on cellular proliferation and/or differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Albright CD, Frost JK and Pressman NJ (1982) Analyt. Quant. Cytol. 4: 414.

    Google Scholar 

  2. Albright CD and Resau JH (1988) NCAB/TCA Newsletter, Vol. VI, Number 1 (p. 5).

  3. Bahr GF, Bartels PH, Bibbo M, De Nicholas M and Wied GL (1973) Acta Cytol. 17: 106–112.

    Google Scholar 

  4. Barker BE and Sanford KK (1970) J. Natl. Cancer Inst. 44: 39–63.

    Google Scholar 

  5. Boone CW and DuPres LT (1968) Cancer Res. 28: 1734–1737.

    Google Scholar 

  6. Boone CW, Sanford KK, Frost JK, Mantel N, Gill GW and Jones GM (1986) Int. J. Cancer 38: 361–367.

    Google Scholar 

  7. Brinkley BR (1982) Cold Spring Harbor Sym. Quant. Biol. 46: 129–140.

    Google Scholar 

  8. Doll R and Peto R (1981) J. Natl. Cancer Inst. 66: 1191–1198.

    Google Scholar 

  9. Dörmer P (1979) J. Histochem, Cytochem. 27: 188–192.

    Google Scholar 

  10. Eckert BS, Caputi SE, and Warren RH (1984) Cell Motil. 4: 169–181.

    Google Scholar 

  11. Folkman J and Moscana A (1978) Nature 273: 345–349.

    Google Scholar 

  12. Fox CH, Caspersson T, Kudynowski J, Sanford K and Tarone RE (1977) Cancer Res. 37: 892–897.

    Google Scholar 

  13. Frost JK (1986) The Cell in Health and Disease, 2nd ed. S. Karger, Basel.

    Google Scholar 

  14. Frost JK, Erozan YS, Gupta PK, and Carter D (1983) In: Atlas of Early Lung Cancer Igaku-Shoin, New York, pp. 39–76.

  15. Gamel JW and McLean IW (1983) Cancer 52: 1032–1038.

    Google Scholar 

  16. Giard DJ, Aaronson SA, Todaro GJ, Arnstein P, Kersey JH, Dosik H, and Parks WP (1973) J. Natl. Cancer Inst. 51: 1417–1423.

    Google Scholar 

  17. Giaretti WA, Gais P, Jutting U, Rodenacker K, and Dörmer P (1983) Analyt. Quant. Cytol. 5: 79–89.

    Google Scholar 

  18. Gill GW, Frost JK, and Miller KA (1974) Acta Cytol. 18: 300–311.

    Google Scholar 

  19. Hajdu S, Bean M, Fogh J, Hajdu E, and Ricci A (1974) Acta Cytol. 18: 321–332.

    Google Scholar 

  20. Handleman SL, Sanford KK, Tarone RE, and Parshad R (1977) In Vitro 13: 526–536.

    Google Scholar 

  21. Hola M and Riley PA (1987) J. Cell Science 88: 73–80.

    Google Scholar 

  22. Ishiwata I, Ishiwata C, Somma M, Nozawa S, and Ishikawa H (1987) Acta Cytol. 31: 925–934.

    Google Scholar 

  23. Jones RT and Elliget K (1987) In Vitro Cell. Devel. Biol. 23:36A.

  24. Kato H, Konaka C, Ono J, Takahashi M, and Hayata Y (1983). In: Cytology of the Lung: Techniques and Interpretation (pp. 63–69). Igaku-Shoin, New York.

    Google Scholar 

  25. Klein-Szanto AJP, Baba M, Trono D, Obara T, Resau J, and Trump BF (1986) Carcinogenesis 7: 987–994.

    Google Scholar 

  26. Koss LG (1979) Diagnostic Cytology and its Histopathologic Bases, 3rd ed. Lippincott, Philadelphia.

    Google Scholar 

  27. Lieber M, Smith B, Szakal A, Nelson-Rees W, and Todaro G (1976) Int. J. Cancer 17: 62–70.

    Google Scholar 

  28. Miyata Y, Nishida E, and Sakai H (1987) Exp. Cell Res. 175: 286–297.

    Google Scholar 

  29. Nauth HF and Boon ME (1983) Acta Cytol. 27: 230–236.

    Google Scholar 

  30. Patten SF (1969) Diagnostic cytology of the uterine cervix. Williams & Wilkins, Baltimore.

    Google Scholar 

  31. Reddel RR, Ke Y, Gerwin BI, McMenamin MG, Lechner JR, Su RT, Biash DE, Park J-B, Rhim JS, and Harris CC (1988) Cancer Res. 48: 1904–1090.

    Google Scholar 

  32. Resau JH and Albright CD (1986) Virchows Arch. [Cell Pathol.] 52: 15–24.

    Google Scholar 

  33. Resau JH, Cottrell JR, Elligett HA, and Hudson EA (1987) Cell Biol. Toxicol. 3: 441–458.

    Google Scholar 

  34. Resau JH and Jones RT (1984) Virchows Arch. [Cell Pathol.] 45: 355–363.

    Google Scholar 

  35. Robbins SL, Cotran RS, and Kumar V (1984) Pathologic Basis of Disease (pp. 749–757). WB Saunders Company, Philadelphia.

    Google Scholar 

  36. Romen W, Ruter A, and Aus HM (1979) In: Pressman NJ and Weid GL (eds.). The Automation of Cancer Cytology and Cell Image Analysis (pp. 47–51). Tutorials of Cytology, Chicago.

    Google Scholar 

  37. Rosenthal DL, Suffin SC, Missirilian N, McLatchie C, and Castleman HR (1984) Analyt. Quant. Cytol. 6: 189–195.

    Google Scholar 

  38. Rosenthal DL, Philips A, Hall TL, Harami S, Missirilian N, and Suffin SC (1987) Analyt. Quant. Cytol. Histol. 9: 165–168.

    Google Scholar 

  39. Sanford HK (1968) In: H Katsuda (ed.). Cancer Cells in Culture (pp. 281–287). University Park Press, Baltimore.

    Google Scholar 

  40. Sanford KK, Barker BE, Parshad R, Westfall BB, Woods MW, Jackson JL, King DR, and Peppers E (1970) J. Natl. Cancer Inst. 45: 1071–1096.

    Google Scholar 

  41. Schoevaert D and Cibert C (1987) Analyt. Quant. Cytol. 9: 315–322.

    Google Scholar 

  42. Schreiber H and Nettesheim P (1977) Cancer Res. 32: 737–745.

    Google Scholar 

  43. Sugimori H, Kashimura Y, Kashimura M, Urushima M, Sato A, and Takao M (1982) Acta Cytol. 26: 439–444.

    Google Scholar 

  44. Terzaghi-Howe M (1987) Carcinogenesis 8: 145–150.

    Google Scholar 

  45. Tomasek JJ and Hay ED (1984) J. Cell Biol. 99: 536–549.

    Google Scholar 

  46. Valerio MG, Fineman EL, Bowman RL, Harris CC, Stoner GD, Autrup H, Trump BF, McDowell EM, and Jones RT (1981) J. Natl cancer Inst. 66: 849–858.

    Google Scholar 

  47. Yoakum GH, Lechner JF, Gabrielson EW, Horba BE, Malan-Shibley L, Willey JC, Valerio MG, Shamsuddin AM, Trump BF, and Harris CC (1985) Science 227: 1174–1179.

    Google Scholar 

  48. Yokota J, Tsuenetsugu-Yokota Y, Battifora H, Le Fevre C, and Cline MJ (1986) Science 231: 261–265.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Contribution No. 2708 from the Pathobiology Laboratory, University of Maryland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albright, C.D., Hay, R., Jones, R.T. et al. Discrimination of normal and transformed cells in vitro by cytologic and morphologic analysis. Cytotechnology 2, 187–201 (1989). https://doi.org/10.1007/BF00133244

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00133244

Key words

Navigation