Advertisement

Annals of Global Analysis and Geometry

, Volume 3, Issue 3, pp 265–273 | Cite as

On the first eigenvalue of the Dirac operator on 6-dimensional manifolds

  • Thomas Friedrich
  • Ralf Grunewald
Article

Keywords

Group Theory Dirac Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J.E. D'Atri, H.K. Nickerson: Geodesic symmetries in spaces with special curvature tensors. J. Diff. Geom. 9 (1974), 251–262.Google Scholar
  2. [2]
    Th. Friedrich: Der erste Eigenwert des Dirac-Operators einer kompakten, Riemannschen Mannigfaltigkeit nichtnegativer Skarlarkrümmung. Math. Nachr. 97(1980), 117–146.Google Scholar
  3. [3]
    Th. Friedrich: A remark on the first eingenvalue of the Dirac operator on 4-dimensional manifolds. Math. Nachr. 102 (1981), 53–56.Google Scholar
  4. [4]
    Th. Friedrich, R. Grunewald: On Einstein metrics on the twistor space of a four-dimensional Riemannian manifold. Math. Nachr. (to appear)Google Scholar
  5. [5]
    D. Husemoller: Fibre bundles New York 1966Google Scholar
  6. [6]
    A. Ikeda: Formally self adjointness for the Dirac operator on homogenous spaces. Osaka J. of Math. 12(1975), 173–185.Google Scholar
  7. [7]
    S. Kobayashi, K. Nomizu: Foundations of Differential Geometry, vol. II. New York, London, Sydney 1969Google Scholar
  8. [8]
    J. Milnor: Spin-structures on manifolds. L'Enseignement Mathématique IX (1963), 198–203Google Scholar
  9. [9]
    S. Sulanke: Der erste Eigenwert des Dirac-Operators auf SΓ5. Math. Nachr. 99(1980), 259–271Google Scholar
  10. [10]
    M. Wang, W. Ziller: On Normal Homogenous Einstein Manifolds. Preprint (1984)Google Scholar

Copyright information

© VEB Deutscher Verlag der Wissenschaften 1985

Authors and Affiliations

  • Thomas Friedrich
    • 1
  • Ralf Grunewald
    • 1
  1. 1.Sektion MathematikHumboldt-UniversitätBerlinGerman Democratic Republic

Personalised recommendations