Advertisement

Annals of Global Analysis and Geometry

, Volume 14, Issue 4, pp 315–371 | Cite as

Normally hyperbolic operators, the Huygens property and conformal geometry

  • Helga Baum
  • Ines Kath
Article

Abstract

In this paper we give a review on normally hyperbolic operators of Huygens type. The methods to determine Huygens operators we explain here were essentially influenced and developed by Paul Günther.

Key words

Hyperbolic operators Huygens' principle conformal geometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AM93]
    Anderson, W. G.; McLenaghan, R. G.: On Huygens' principle for relativistic wave equations. C. R. Math. Acad. Sci., Soc. R. Can. 15 (1993) 1, 41–45.Google Scholar
  2. [AM94]
    Anderson, W. G.; McLenaghan, R.G.: On the validity of Huygens' Principle for second order partial differential equations with four independent variables. II: A sixth necessary condition. Ann. Inst. Henri Poincaré, Phys. Théor. 60 (1994) 4, 373–432.Google Scholar
  3. [Bau96]
    Baum, H.: The Dirac operator on Lorentzian spin manifolds and the Huygens property. SFB 288-Preprint 1996.Google Scholar
  4. [BV94a]
    Berest, Y. Y.; Veselov, A.P.: Hadamard's problem and Coxeter groups: new examples of Huygens' equations. Funkts. Anal. Prilozh. 28 (1994) 1, 3–15. (Russ.)Google Scholar
  5. [BV94b]
    Berest, Y. Y.; Veselov, A.P.: Huygens' principle and integrability. Usp. Mat. Nauk 49 (1994) 6, 7–78. (Russ.)Google Scholar
  6. [BGM74]
    Berger, M.; Gauduchon, P.; Mazet, E.: Le Spectre d'une Variete Riemanniennes. Lect. Notes Math. 194, Springer 1974.Google Scholar
  7. [Bes87]
    Besse, A.L.: Einstein Manifolds. Ergeb. Math. Grenzgeb. 10, Springer 1987.Google Scholar
  8. [CCMW91]
    Carminati, J.; Czapor, S.R.; McLenaghan, R.G.; Williams, G.C.: Consequences of the validity of Huygens' principle for the conformally invariant scalar wave equation, Weyl's neutrino equation and Maxwell's equation on Petrov type II space-times. Ann. Inst. Henri Poincaré Phys. Théor. 54 (1991) 1, 9–16.Google Scholar
  9. [CM86]
    Carminati, J.; McLenaghan, R.G.: An explicit determination of the Petrov type N space-times on which the conformally invariant scalar wave equation satisfies Huygens' principle. Ann. Inst. Henri Poincaré, Phys. Théor. 44 (1986), 115–153.Google Scholar
  10. [CM87]
    Carminati, J.; McLenaghan, R.G.: An explicit determination of the space-times on which the conformally invariant scalar wave equation satisfies Huygens' principle II. Petrov type D space-times. Ann. Inst. Henri Poincaré, Phys. Théor. 47 (1987), 337–354.Google Scholar
  11. [CM88]
    Carminati, J.; McLenaghan, R.G.: An explicit determination of the space-times on which the conformally invariant scalar wave equation satisfies Huygens' principle III. Petrov type III space-times. Ann. Inst. Henri Poincaré, Phys. Théor. 48 (1988), 77–96.Google Scholar
  12. [Feg84]
    Fegan, H.D.: Differential equations on Lie groups and tori, the wave equation and Huygens' principle. Rocky Mt. J. Math. 14 (1984), 699–704.Google Scholar
  13. [Fri75]
    Friedlander, F.G.: The Wave Equation on a curved Space Time. Camb. Univ. Press 1975.Google Scholar
  14. [Gün52]
    Günther, P.: Zur Gültigkeit des Huygensschen Prinzips bei partiellen Differentialgleichungen vom normalen hyperbolischen Typus. Ber. Verh. Sächs. Akad. Wiss. Leipzig, Math.-Nat. Klasse 100 (2), Akademie-Verlag, Berlin 1952.Google Scholar
  15. [Gün65]
    Günther, P.: Ein Beispiel einer nichttrivialen Huygensschen Differentialgleichung mit vier unabhängigen Veränderlichen. Arch. Ration. Mech. Anal. 18 (1965), 103–106.Google Scholar
  16. [Gün88]
    Günther, P.: Huygens' Principle and Hyperbolic Equations. Persp. Math. 5, Acad. Press Inc., Boston 1988.Google Scholar
  17. [GW85]
    Günther, P.; Wünsch, V.: On some polynomial conformal tensors. Math. Nachr. 124 (1985), 217–238.Google Scholar
  18. [GW86]
    Günther, P.; Wünsch, V.: Contributions to a theory of polynomial conformal tensors. Math. Nachr. 126 (1986), 83–100.Google Scholar
  19. [Had23]
    Hadamard, J.: Lectures on Cauchy's Problem in Linear Partial Differential Equations. Yale Univ. Press, New Haven 1923.Google Scholar
  20. [Hel84]
    Helgason, S.: Wave equation on homogeneous spaces. In: Lie group representations. Lect. Notes Math. 1077, Springer-Verlag, 1984, 254–287.Google Scholar
  21. [Hel92]
    Helgason, S.: Huygens' principle for wave equations on symmetric spaces. J. Funct. Anal. 107 (1992), 279–288.Google Scholar
  22. [Hel94]
    Helgason, S.: Geometric Analysis on Symmetric Spaces. Math. Surv. Monogr. 39, AMS Providence, Rhode Island, 1994.Google Scholar
  23. [Ill88]
    Illge, R.: On Huygens' principle for the relativistic higher spin wave equation of Buchdahl and Wünsch in presence of a gravitational and electromagnetic field. Math. Nachr. 139 (1988), 237–243.Google Scholar
  24. [McL69]
    McLenaghan, R.: An explicit determination of the empty space-times on which the wave equation satisfies Huygens' principle. Proc. Cambr. Phil. Soc. 65 (1969), 139–155.Google Scholar
  25. [OS92]
    Olafsson, G.; Schlichtkrull, H.: Wave propagation on Rienmannian symmetric spaces. J. Funct. Anal. 107 (1992), 270–278.Google Scholar
  26. [Sch71]
    Schimming, R.: Zur Gültigkeit des Huygensschen Prinzips bei einer speziellen Metrik. ZAMM 51 (1971), 201–208.Google Scholar
  27. [Sch74]
    Schimming, R.: Riemannsche R↑me mit ebenfrofrotiger und ebener Symmetrie. Math. Nachr. 59 (1974), 129–162.Google Scholar
  28. [Sch78]
    Schimming, R.: Das Huygenssche Prinzip bei linearen hyperbolischen Differentialgleichungen 2. Ordnung für allgemeine Felder. Beitr. Anal. 11 (1978), 45–90.Google Scholar
  29. [Sch84]
    Schimming, R.: Konforminvarianten vom Gewicht — 1 eines Zusammenhanges oder Eichfeldes. Z. Anal. Anwend. 3 (1984), 401–412.Google Scholar
  30. [SS94]
    Schimming, R.; Schlichtkrull, H.: Helmholtz Operators on Harmonic Manifolds. Acta Math. 173 (1994) 2, 235–258.Google Scholar
  31. [Wün76]
    Wünsch, V.: Über eine Klasse knoforminvarianter Tensoren. Math. Nachr. 73 (1976), 37–58.Google Scholar
  32. [Wün78]
    Wünsch, V.: Cauchy-Problem und Huygenssches Prinzip bei einigen Klassen spinorieller Feldgleichungen I. Beitr. Anal. 12 (1978), 47–76.Google Scholar
  33. [Wün79]
    Wünsch, V.: Cauchy-Problem und Hygenssches Prinzip bei einigen Klassen spinorieller Feldgleichungen II. Beitr. Anal. 13 (1979), 147–177.Google Scholar
  34. [Wün80]
    Wünsch, V.: Selbstadjungierte HuygensscheDifferentialgleichungen 2. Ordnung für nicht-skalare Spintensorfelder. Math. Nachr. 94 (1980), 211–242.Google Scholar
  35. [Wün85]
    Wünsch, V.: Cauchy problem and Huygens' principle for relavistic higher spin wave equations in an arbitrary curved spaced-time. Gen. Relativ. Gravitation 17 (1985), 15–38.Google Scholar
  36. [Wün88]
    Wünsch, V.: Huygens' principle on Petrov type D space-times. Ann. Phys. 46 (1988) 8, 593–597.Google Scholar
  37. [Wün94]
    Wüsch, V.: Moments and Huygens' principle for conformally invariant field equations in curved space-times. Ann. Inst. Henri Poincaré 60 (1994) 4, 433–455.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Helga Baum
    • 1
  • Ines Kath
    • 1
  1. 1.Institut für MathematikHumboldt-Universität zu BerlinBerlinGermany

Personalised recommendations