Skip to main content
Log in

Riemannian submersions and the regular interval theorem of Morse theory

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

A generalized version of the regular interval theorem of Morse theory is proven using techniques from the theory of Riemannian submersions and conformal deformations. This approach provides an interesting link between Riemannian submersions (for real valued functions) and Morse theory.

Let % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWexLMBb50ujb% qegi0BVTgib5gDPfxDHbacfaGae8NKbmiaaa!3E95!\[f\]: (M,) → R be a smooth real valued function on a non-compact complete connected Riemannian manifold (M,g) such that df is bounded in norm away from zero. By pointwise conformally deforming g to pg, p = ∥d% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWexLMBb50ujb% qegi0BVTgib5gDPfxDHbacfaGae8NKbmiaaa!3E95!\[f\]∥2, we show that (M,pg) is a complete Riemannian manifold, and that % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWexLMBb50ujb% qegi0BVTgib5gDPfxDHbacfaGae8NKbmiaaa!3E95!\[f\]: (M,pg) → R is a surjective Riemannian submersion and a globally trivial fiber bundle over R. In particular, all of the level hypersurfaces of % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWexLMBb50ujb% qegi0BVTgib5gDPfxDHbacfaGae8NKbmiaaa!3E95!\[f\] are diffeomorphic, and M is globally diffeomorphic to the product bundle R × % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWexLMBb50ujb% qegi0BVTgib5gDPfxDHbacfaGae8NKbmiaaa!3E95!\[f\] −1(0) by a diffeomorphism F 0: R × % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWexLMBb50ujb% qegi0BVTgib5gDPfxDHbacfaGae8NKbmiaaa!3E95!\[f\]−1(0) → M that “straightens out” the level hypersurfaces of % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWexLMBb50ujb% qegi0BVTgib5gDPfxDHbacfaGae8NKbmiaaa!3E95!\[f\].

Moreover, we show that (F 0)*(pg) is a parameterized Riemannian product manifold on R×% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWexLMBb50ujb% qegi0BVTgib5gDPfxDHbacfaGae8NKbmiaaa!3E95!\[f\]−1(0), i.e., a product manifold with a metric that varies on the fibers {t} × % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWexLMBb50ujb% qegi0BVTgib5gDPfxDHbacfaGae8NKbmiaaa!3E95!\[f\]−1(0). Also, F 0: (R × % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWexLMBb50ujb% qegi0BVTgib5gDPfxDHbacfaGae8NKbmiaaa!3E95!\[f\]−1(0),(F 0)*(pg)) → (M,g) is a conformal diffeomorphism between the Reimannian manifolds (R × % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWexLMBb50ujb% qegi0BVTgib5gDPfxDHbacfaGae8NKbmiaaa!3E95!\[f\]−1(0), (F 0)*(pg)) and (M,g),so that (M,g) is conformally equivalent to a parameterized Riemannian product manifold. The conformal diffeomorphism F 0 is an isometry between the Riemannian product manifold (R × % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWexLMBb50ujb% qegi0BVTgib5gDPfxDHbacfaGae8NKbmiaaa!3E95!\[f\]−1(0), 1 + g 0) (where g 0) is the metric induced by g on % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWexLMBb50ujb% qegi0BVTgib5gDPfxDHbacfaGae8NKbmiaaa!3E95!\[f\]−1(0) and (M,g) if and only if ∥d% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWexLMBb50ujb% qegi0BVTgib5gDPfxDHbacfaGae8NKbmiaaa!3E95!\[f\]∥ = 1 and Hess % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWexLMBb50ujb% qegi0BVTgib5gDPfxDHbacfaGae8NKbmiaaa!3E95!\[f\] = 0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abraham, R.; Marsden, J. E. Foundations of Mechanics. Second edition. Addison Wesley Publishing Company, Reading, Massachusetts 1978.

    Google Scholar 

  2. Abraham, R.; Marsden, J. E.; Ratiu, T.: Manifolds, Tensor Analysis, and Applications. Second edition. Springer-Verlag, New York 1988.

    Google Scholar 

  3. Baird, P.; Eells, J.: A conservation law for harmonic maps. In: Geometry Symposium, Utrecht 1980. Lect. Notes Math. 894, Springer-Verlag, New York 1980, pp. 1–25.

    Google Scholar 

  4. Ballmann, W.; Gromov, M.; Schroeder, V.: Manifolds of Nonpositive Curvature. Birkhäuser, Boston 1985.

    Google Scholar 

  5. Bryant, R.; Chern, S.; Gardner, R.; Goldschmidt, H.; Griffiths, P.: Exterior Differential Systems. Springer-Verlag, NewYork 1991.

    Google Scholar 

  6. Camacho, C.; Neto, A.: Geometric Theory of Foliations, Birkhäuser, Boston 1985.

    Google Scholar 

  7. Derdziński, A.: Hermitian Einstein metrics. In: Willmore, T.; Hitchin, N. (eds.): Global Riemannian Geometry. Ellis Horwood Limited, Chichester 1984.

    Google Scholar 

  8. Earle, C.; Eells, J.: Foliations andfibrations. J. Differ. Geom. 1 (1967), 33–41.

    Google Scholar 

  9. Ebin, D.; Marsden, J.: Groups of diffeomorphisms and the motion of an incompressible fluid. Ann. Math. 92 (1970), 102–163.

    Google Scholar 

  10. Eells, J.; Sampson, J.: Harmonic mappings of Riemannian manifolds. Am. J. Math. 86 (1964), 109–160.

    Google Scholar 

  11. Eells, J.; Lemaire, L.: Selected Topics in Harmonic Maps. Conference Board of the Mathematical Sciences, Number 50, Am. Math. Soc., Providence, Rhode Island,1983

  12. Ehresmann, C.: Sur les théorie des espaces fibrés. Colloq. Int. CNRS, Num 2, Paris 1947 CNRS, Paris (1949) 3–15.

    Google Scholar 

  13. Ehresmann, C.: Les connexions infinitésimales dans un espace fibré différentiable, Colloque de Topologie, Bruxelles 1950, 29–55.

  14. Eisenhart, L.: Riemannian Geometry. Princeton University Press, Princeton, New Jersey 1925.

    Google Scholar 

  15. Eschenburg, J.; Heintze, E.: An elementary proof of the Cheeger-Gromoll Splitting Theorem. Ann. Glob. Anal. Geom. 2 (1984), 141–151.

    Google Scholar 

  16. Fischer, A.: Riemannian maps between Riemannian manifolds. In: Gotay, M.; Marsden, J.; Moncrief, V. (eds.): Mathematical Aspects of Classical Field Theory. Contemp. Math., Providence, Rhode Island, 1992.

    Google Scholar 

  17. Garabedian, P.: Partial Differential Equations. John Wiley and Sons, New York 1964.

    Google Scholar 

  18. García-Río, E.; Kupeli, D.: Singularity versus splitting theorems for stably causal spacetimes. Ann. Global Anal. Geom. 14 (1996), 301–312.

    Google Scholar 

  19. Guillemin, V.; Sternberg, S.: Symplectic Techniques in Physics. Cambridge University Press, New York 1984.

    Google Scholar 

  20. Hermann, R.: A sufficient condition that a mapping of Riemannian manifolds be a fibre bundle. Proc. Am. Math. Soc. 11 (1960), 236–242.

    Google Scholar 

  21. Hermann, R.: Differential Geometry and the Calculus of Variations. Academic Press, New York 1968.

    Google Scholar 

  22. Hirsch, M.: Differential Topology. Springer-Verlag, New York 1976.

    Google Scholar 

  23. John, F.: Partial Differential Equations. Springer-Verlag, New York 1982.

    Google Scholar 

  24. Kobyashi, S.; Nomizu, K.: Foundations of Differential Geometry, vol 2. Interscience, Wiley, New York 1969.

    Google Scholar 

  25. Kupeli, D.: The eikonal equation of an indefinite metric. Acta Appl. Math. 40 (1995), 245–253.

    Google Scholar 

  26. Kupeli, D.: On semi-Riemannian submersions. Preprint 1996.

  27. Lawson, B.: Lectures on Minimal Submanifolds, vol 1. Instituto de Matematica Pura E Aplicada, Conselho Nacional de Pesquisas, Rio de Janeiro 1970.

    Google Scholar 

  28. Marsden, J.: Qualitative methods in bifurcation theory. Bull. Am. Math. Soc. 84 (1978), 1125–1148.

    Google Scholar 

  29. Milnor, J.: Morse Theory. Princeton University Press, Princeton, New Jersey, 1963.

    Google Scholar 

  30. Nagano, T.: On fibred Riemannian manifolds. Sci. Papers of the College of General Education, Univ. of Tokyo 10 (1960), 17–27.

    Google Scholar 

  31. Nomizu, K.; Ozeki, H.: The existence of complete Riemannian metrics. Proc. Am. Math. Soc. 12 (1961), 889–891.

    Google Scholar 

  32. O'Neill, B.: The fundamental equations of a submersion. Mich. Math. J. 13 (1966), 459–469.

    Google Scholar 

  33. O'Neill, B.: Semi-Riemannian Geometry with Applications to Relativity. Academic Press, New York 1983.

    Google Scholar 

  34. Palais, R.: Morse theory on Hilbert manifolds. Topology 2 (1963), 299–340.

    Google Scholar 

  35. Palais, R.: Critical point theory and the minimax principle. In: Global Analysis. Proc. Symp. Pure Math. 15, 1970, 185–212.

  36. Palais, R.; Smale, S.: A generalized Morse theory. Bull. Am. Math. Soc. 70 (1964), 165–171.

    Google Scholar 

  37. Palais, R.; Terng, C.: Critical Point Theory and Submanifold Geometry, Lect. Notes Math. 1353, Springer-Verlag, New York 1988.

    Google Scholar 

  38. Reinhart, B.: Foliated manifolds with bundle-like metrics. Ann. Math. 69 (1959), 119–132.

    Google Scholar 

  39. Schwartz, J.: Nonlinear Functional Analysis. Gordon and Breach Science Publishers, New York 1969.

    Google Scholar 

  40. Smale, S.: Morse theory and a non-linear generalization of the Dirichlet problem. Ann. Math. 80 (1964) 2, 382–396.

    Google Scholar 

  41. Spivak, M.: A Comprehensive Introduction to Differential Geometry, vol. 3. Publish or Perish, Inc., Boston, Mass., 1975.

    Google Scholar 

  42. Wolf, J.: Differentiable fibre spaces and mappings compatible with Riemannian metrics. Mich. Math. J. 11 (1964), 65–70.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by T. Ratiu

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fischer, A.E. Riemannian submersions and the regular interval theorem of Morse theory. Ann Glob Anal Geom 14, 263–300 (1996). https://doi.org/10.1007/BF00054474

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00054474

Key words

MSC 1991

Navigation