Artificial Intelligence and Machine Learning: A New Disruptive Force in Orthopaedics

  • Murali PoduvalEmail author
  • Avik Ghose
  • Sanjeev Manchanda
  • Vaibhav Bagaria
  • Aniruddha Sinha
Narrative Review


Orthopaedics as a surgical discipline requires a combination of good clinical acumen, good surgical skill, a reasonable physical strength and most of all, good understanding of technology. The last few decades have seen rapid adoption of new technologies into orthopaedic practice, power tools, new implants, CAD–CAM design, 3-D printing, additive manufacturing just to name a few. The new disruption in orthopaedics in the current time and era is undoubtedly the advent of artificial intelligence and robotics. As these technologies take root and innovative applications continue to be incorporated into the main-stream orthopedics, as we know it today, it is imperative to look at and understand the basics of artificial intelligence and what work is being done in the field today. This article takes the form of a loosely structured narrative review and will introduce the reader to key concepts in the field of artificial intelligence as well as some of the directions in application of the same in orthopaedics. Some of the recent work has been summarised and we present our viewpoint at the conclusion as to why we must consider artificial intelligence as a disrupting positive influence on orthopaedic surgery.


Artificial intelligence Orthopaedic surgery Machine learning 



Artificial intelligence


Deep learning


Machine learning


Convolutional neural network


Artificial neural network


Recurrent neural network


Author contributions

Concepts: MP, AG, SM, VB, and AS. Design: MP, AG, SM, VB, and AS. Definition of intellectual content: MP, AG, SM, VB, and AS. Literature search: MP, AG, SM, VB, and AS. Clinical studies: MP, AG, SM, VB, and AS. Experimental studies: not available. Data acquisition: none. Data analysis: none. Statistical analysis: not available. Manuscript preparation: MP, AG, SM, VB, and AS. Manuscript editing: MP, AG, SM, VB, and AS. Manuscript review: MP, AG, SM, VB, and AS. Guarantor: MP, AG, SM, VB, and AS.

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interests in relation to the content published here which is entirely educative and informative.


  1. 1.
    Nadella, S. (2016). The partnership of the future, SLATE: June 28 2016. Accessed: 19 Jun 2019.
  2. 2.
    Turing, A. M. (2019). Computing Machinery and Intelligence, Mind, New Series, Vol. 59, No. 236 (Oct., 1950), pp. 433–460 Published by: Oxford University Press on behalf of the Mind Association available at: Accessed: 19 Jun 2019.
  3. 3.
    Domingo, P. (2017). The machine learning revolution. In The master algorithm: How the quest for the ultimate learning machine will remake our world (pp. 1–22). UK: Penguin Random House.Google Scholar
  4. 4.
    Woodson, J. (2019). Decades Ago, Pilots Learned to “Fly by Instruments.” Doctors Need to Do the Same [Internet]. Harvard Business Review. 2019 [cited 23 June 2019].
  5. 5.
    McCarthy, J., Marvin, L., Minsky, M. L., Rochester, N., & Shannon, C. E. (1995). A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence. August 31, 1955. Accessed June 23 2019.
  6. 6.
    Stone, P., Brooks, R., Brynjolfsson, E., Calo, R., Etzioni, O., & Hager, G., et al. (2019). Artificial Intelligence and Life in 2030.”One Hundred Year Study on Artificial Intelligence: Report of the 2015-2016 Study Panel, Stanford University, Stanford, CA, September 2016. Accessed June 23 2019.
  7. 7.
    Hintz A. (2019). Understanding the four types of AI, from reactive robots to self-aware beings [Internet]. The Conversation. 2019 [cited 28 July 2019]. Available from: Accessed 28 July 2018.
  8. 8.
    Cool vendors in healthcare artificial intelligence. Accessed June 23 2017
  9. 9.
    González, G. C., Núñez-Valdez, E., García-Díaz, V., Pelayo, G., Bustelo, C., & Cueva-Lovelle, J. (2019). A Review of Artificial Intelligence in the Internet of Things. International Journal of Interactive Multimedia and Artificial Intelligence.,5(4), 9.CrossRefGoogle Scholar
  10. 10.
    McCarthy, J. (2019). What is AI? Accessed 23 June 2019.
  11. 11.
    Russel, S. J., & Norvig, P. (2015). Introduction. In Artificial intelligence: A modern approach (3rd ed., pp. 1–3). New Delhi: Pearson India Education Services Pvt Ltd.Google Scholar
  12. 12.
    Johnson, K. W., Torres Soto, J., Glicksberg, B. S., Shameer, K., Miotto, R., Ali, M., et al. (2018). Artificial intelligence in cardiology. Journal of the American College of Cardiology,71(23), 2668–2679.PubMedCrossRefGoogle Scholar
  13. 13.
    Russel, S. J., & Norvig, P. (2015). Learning from examples. Artificial intelligence: A modern approach (3rd ed., pp. 706–781). New Delhi: Pearson India Education Services Pvt Ltd.Google Scholar
  14. 14.
    Deo, R. C. (2015). Machine learning in medicine. Circulation,132(20), 1920–1930.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Rajkomar, A., Oren, E., Chen, K., Dai, A. M., Hajaj, N., Hardt, M., et al. (2018). NPJ Digit Med.,1, 18.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Colton, S., & Mentor, F. R. C. (2007). “The balance filter.” Presentation, Massachusetts Institute of Technology (2007). Accessed 14 Dec 2019.
  17. 17.
    Chawla, N., Bowyer, K., Hall, L., & Kegelmeyer, W. (2002). SMOTE: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research.,16, 321–357.CrossRefGoogle Scholar
  18. 18.
    Mundra, P., & Rajapakse, J. (2010). SVM-RFE with MRMR filter for gene selection. IEEE Transactions on NanoBioscience.,9(1), 31–37.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Pai-shun, T., Chun-Chen, T., Pin-Yu, C., Ya-Yun, L., & Shin-Ming, C. (2019). FEAST: An automated feature selection framework for compilation tasks. [Internet]. 2016 [cited 28 July 2019]. Available from:
  20. 20.
    Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Li, H., Ma, S., et al. (2017). Artificial intelligence in healthcare: past, present and future. Stroke and Vascular Neurology,2(4), 230–243.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Obermeyer, Z., & Emanuel, E. J. (2016). Predicting the future1big data, machine learning, and clinical medicine. New England Journal of Medicine,375(13), 1216–1219.PubMedCrossRefGoogle Scholar
  22. 22.
    Reddy, S., Fox, J., & Purohit, M. P. (2019). Artificial intelligence-enabled healthcare delivery. Journal of the Royal Society of Medicine,112(1), 22–28.PubMedCrossRefGoogle Scholar
  23. 23.
    ‘Software as a medical device (SaMD)”. (2019). Accessed 28 June 2019.
  24. 24.
    “Artificial Intelligence and machine learning in SaMD”. (2019). Accessed 28 June 2019.
  25. 25.
    Developing Software Pre-certification program: A Working Model” . (2019). Accessed 28 June 2019.
  26. 26.
    Challen, R., Denny, J., Pitt, M., Gompels, L., Edwards, T., & Tsaneva-Atanasova, K. (2019). Artificial intelligence, bias and clinical safety. BMJ Qual Saf,28(3), 231–237.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Keikes, L., Medlock, S., van de Berg, D. J., Zhang, S., Guicherit, O. R., Punt, C. J. A., et al. (2018). The first steps in the evaluation of a “black-box” decision support tool: a protocol and feasibility study for the evaluation of Watson for Oncology. Journal Of Clinical and Translational Research,3(Suppl 3), 411–423.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Sharma, S., & Seth, U. (2017). Artificial intelligence in cardiology. Journal of the Practice of Cardiovascular Sciences,3(3), 158.CrossRefGoogle Scholar
  29. 29.
    Bonderman, D. (2017). Artificial intelligence in cardiology. Wiener Klinische Wochenschrift,129(23–24), 866–868.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Tajik, A. J. (2016). machine learning for echocardiographic imaging: embarking on another incredible journey. Journal of the American College of Cardiology,68(21), 2296–2298.PubMedCrossRefGoogle Scholar
  31. 31.
    Dijkstra, B., Zijlstra, W., Scherder, E., & Kamsma, Y. (2008). Detection of walking periods and number of steps in older adults and patients with Parkinson’s disease: accuracy of a pedometer and an accelerometry-based method. Age and Ageing,37(4), 436–441.PubMedCrossRefGoogle Scholar
  32. 32.
    Herman, T., Weiss, A., Brozgol, M., Giladi, N., & Hausdorff, J. M. (2014). Gait and balance in Parkinson’s disease subtypes: objective measures and classification considerations. Journal of Neurology,261(12), 2401–2410.PubMedCrossRefGoogle Scholar
  33. 33.
    Weiss, A., Herman, T., Giladi, N., & Hausdorff, J. M. (2015). New evidence for gait abnormalities among Parkinson’s disease patients who suffer from freezing of gait: insights using a body-fixed sensor worn for 3 days. Journal of Neural Transmission (Vienna),122(3), 403–410.CrossRefGoogle Scholar
  34. 34.
    Raknim, P., & Lan, K. C. (2016). Gait monitoring for early neurological disorder detection using sensors in a smartphone: validation and a case study of Parkinsonism. Telemedicine and e-Health,22(1), 75–81.PubMedCrossRefGoogle Scholar
  35. 35.
    Azuaje, F. (2019). Artificial intelligence for precision oncology: beyond patient stratification. NPJ Precision Oncology,3, 6.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Curioni-Fontecedro, A. (2017). A new era of oncology through artificial intelligence. ESMO Open,2(2), e000198.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Kim, Y. Y., Oh, S. J., Chun, Y. S., Lee, W. K., & Park, H. K. (2018). Gene expression assay and Watson for Oncology for optimization of treatment in ER-positive, HER2-negative breast cancer. PLoS One,13(7), e0200100.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Malin, J. L. (2013). Envisioning Watson as a rapid-learning system for oncology. Journal of Oncology Practice,9(3), 155–157.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Choi, Y. I., Chung, J. W., Kim, K. O., Kwon, K. A., Kim, Y. J., Park, D. K., et al. (2019). Concordance rate between clinicians and watson for oncology among patients with advanced gastric cancer: Early, real-world experience in Korea. Canadian Journal of Gastroenterology and Hepatology,2019, 8072928.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Berg, H. E. (2017). Will intelligent machine learning revolutionize orthopedic imaging? Acta Orthopaedica,88(6), 577.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Olczak, J., Fahlberg, N., Maki, A., Razavian, A. S., Jilert, A., Stark, A., et al. (2017). Artificial intelligence for analyzing orthopedic trauma radiographs. Acta Orthopaedica,88(6), 581–586.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Cabitza, F., Locoro, A., & Banfi, G. (2018). Machine learning in orthopedics: A literature review. Frontiers in Bioengineering and Biotechnology,6, 75.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Kim, J. S., Merrill, R. K., Arvind, V., Kaji, D., Pasik, S. D., Nwachukwu, C. C., et al. (2018). Examining the ability of artificial neural networks machine learning models to accurately predict complications following posterior lumbar spine fusion. Spine (Phila Pa 1976),43(12), 853–860.CrossRefGoogle Scholar
  44. 44.
    Paulino Pereira, N. R., Janssen, S. J., van Dijk, E., Harris, M. B., Hornicek, F. J., Ferrone, M. L., et al. (2016). Development of a prognostic survival algorithm for patients with metastatic spine disease. Journal of Bone and Joint Surgery American,98(21), 1767–1776.CrossRefGoogle Scholar
  45. 45.
    Jamaludin, A., Lootus, M., Kadir, T., Zisserman, A., Urban, J., Battié, M. C., et al. (2017). ISSLS PRIZE IN BIOENGINEERING SCIENCE 2017: Automation of reading of radiological features from magnetic resonance images (MRIs) of the lumbar spine without human intervention is comparable with an expert radiologist. European Spine Journal,26(5), 1374–1383.PubMedCrossRefGoogle Scholar
  46. 46.
    Oh, E., Seo, S. W., Yoon, Y. C., Kim, D. W., Kwon, S., & Yoon, S. (2017). Prediction of pathologic femoral fractures in patients with lung cancer using machine learning algorithms: Comparison of computed tomography-based radiological features with clinical features versus without clinical features. Journal of Orthopaedic Surgery (Hong Kong),25(2), 2309499017716243.Google Scholar
  47. 47.
    Janssen, S. J., van der Heijden, A. S., van Dijke, M., Ready, J. E., Raskin, K. A., Ferrone, M. L., et al. (2015). 2015 Marshall urist young investigator award: Prognostication in patients with long bone metastases: Does a boosting algorithm improve survival estimates? Clinical Orthopaedics and Related Research,473(10), 3112–3121.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Thio, Q. C. B. S., Karhade, A. V., Ogink, P. T., Raskin, K. A., De Amorim, Bernstein K., Lozano Calderon, S. A., et al. (2018). Can machine-learning techniques be used for 5-year survival prediction of patients with chondrosarcoma? Clinical Orthopaedics and Related Research,476(10), 2040–2048.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Bongers, M. E. R., Thio, Q. C. B. S., Karhade, A. V., Storm, M. L., Raskin, K. A., Lozano Calderon, S. A., et al. (2019). Does the SORG Algorithm predict 5-year survival in patients with chondrosarcoma? An external validation. Clinical Orthopaedics and Related Research, 477, 2296–2303.CrossRefGoogle Scholar
  50. 50.
    Piccioli, A., Spinelli, M. S., Forsberg, J. A., Wedin, R., Healey, J. H., Ippolito, V., et al. (2015). How do we estimate survival? External validation of a tool for survival estimation in patients with metastatic bone disease-decision analysis and comparison of three international patient populations. BMC Cancer,22(15), 424.CrossRefGoogle Scholar
  51. 51.
    Ogura, K., Gokita, T., Shinoda, Y., Kawano, H., Takagi, T., Ae, K., et al. (2017). Can a multivariate model for survival estimation in skeletal metastases (PATHFx) be externally validated using japanese patients? Clinical Orthopaedics and Related Research,475(9), 2263–2270.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Forsberg, J. A., Wedin, R., Boland, P. J., & Healey, J. H. (2017). Can we estimate short- and intermediate-term survival in patients undergoing surgery for metastatic bone disease? Clinical Orthopaedics and Related Research,475(4), 1252–1261.PubMedCrossRefGoogle Scholar
  53. 53.
    Nandra, R., Parry, M., Forsberg, J., & Grimer, R. (2017). Can a bayesian belief network be used to estimate 1-year survival in patients with bone sarcomas? Clinical Orthopaedics and Related Research,475(6), 1681–1689.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Sikka, R. S., Baer, M., Raja, A., Stuart, M., & Tompkins, M. (2019). Analytics in sports medicine: Implications and responsibilities that accompany the era of big data. Journal of Bone and Joint Surgery American,101(3), 276–283.CrossRefGoogle Scholar
  55. 55.
    Ashinsky, B. G., Bouhrara, M., Coletta, C. E., Lehallier, B., Urish, K. L., Lin, P. C., et al. (2017). Predicting early symptomatic osteoarthritis in the human knee using machine learning classification of magnetic resonance images from the osteoarthritis initiative. Journal of Orthopaedic Research,35(10), 2243–2250.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Schmaranzer, F., Helfenstein, R., Zeng, G., Lerch, T. D., Novais, E. N., Wylie, J. D., et al. (2019). Automatic MRI-based three-dimensional models of hip cartilage provide improved morphologic and biochemical analysis. Clinical Orthopaedics and Related Research,477(5), 1036–1052.PubMedCrossRefGoogle Scholar
  57. 57.
    Bevevino, A. J., Dickens, J. F., Potter, B. K., Dworak, T., Gordon, W., & Forsberg, J. A. (2014). A model to predict limb salvage in severe combat-related open calcaneus fractures. Clinical Orthopaedics and Related Research,472(10), 3002–3009.PubMedCrossRefGoogle Scholar
  58. 58.
    Menendez, M. E., Shaker, J., Lawler, S. M., Ring, D., & Jawa, A. (2019). Negative patient-experience comments after total shoulder arthroplasty. Journal of Bone and Joint Surgery American,101(4), 330–337.CrossRefGoogle Scholar
  59. 59.
    Fontana, M. A., Lyman, S., Sarker, G. K., Padgett, D. E., & MacLean, C. H. (2019). Can machine learning algorithms predict which patients will achieve minimally clinically important differences from total joint arthroplasty? Clinical Orthopaedics and Related Research,477(6), 1267–1279.PubMedCrossRefGoogle Scholar
  60. 60.
    Harris, A. H. S., Kuo, A. C., Weng, Y., Trickey, A. W., Bowe, T., & Giori, N. J. (2019). Can machine learning methods produce accurate and easy-to-use prediction models of 30-day complications and mortality after knee or hip arthroplasty? Clinical Orthopaedics and Related Research,477(2), 452–460.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Harris, A. H., Kuo, A. C., Bowe, T., Gupta, S., Nordin, D., & Giori, N. J. (2018). Prediction models for 30-day mortality and complications after total knee and hip arthroplasties for veteran health administration patients with osteoarthritis. Journal of Arthroplasty,33(5), 1539–1545.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Ramkumar, P. N., Navarro, S. M., Haeberle, H. S., Karnuta, J. M., Mont, M. A., Iannotti, J. P., et al. (2019). Development and validation of a machine learning algorithm after primary total hip arthroplasty: Applications to length of stay and payment models. Journal of Arthroplasty,34(4), 632–637.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Navarro, S. M., Wang, E. Y., Haeberle, H. S., Mont, M. A., Krebs, V. E., Patterson, B. M., et al. (2018). Machine learning and primary total knee arthroplasty: Patient forecasting for a patient-specific payment model. Journal of Arthroplasty,33(12), 3617–3623.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Ramkumar, P. N., Haeberle, H. S., Bloomfield, M. R., Schaffer, J. L., Kamath, A. F., Patterson, B. M., et al. (2019). Artificial intelligence and arthroplasty at a single institution: Real-world applications of machine learning to big data, value-based care, mobile health, and remote patient monitoring. The Journal of Arthroplasty. Scholar
  65. 65.
    Cilla, M., Borgiani, E., Martínez, J., Duda, G. N., & Checa, S. (2017). Machine learning techniques for the optimization of joint replacements: Application to a short-stem hip implant. PLoS One,12(9), e0183755.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Stojadinovic, A., Kyle Potter, B., Eberhardt, J., Shawen, S. B., Andersen, R. C., Forsberg, J. A., et al. (2011). Development of a prognostic naive bayesian classifier for successful treatment of nonunions. Journal of Bone and Joint Surgery. American Volume,93(2), 187–194.CrossRefGoogle Scholar
  67. 67.
    Begg, R., & Kamruzzaman, J. (2005). A machine learning approach for automated recognition of movement patterns using basic, kinetic and kinematic gait data. Journal of Biomechanics,38(3), 401–408.PubMedCrossRefGoogle Scholar
  68. 68.
    Joyseeree, R., Abou Sabha, R., & Mueller, H. (2015). Applying machine learning to gait analysis data for disease identification. Studies in Health Technology and Informatics,210, 850–854.PubMedGoogle Scholar
  69. 69.
    Sayed, M. (2018). Biometric gait recognition based on machine learning algorithms. Journal of Computer Science.,14(7), 1064–1073.CrossRefGoogle Scholar
  70. 70.
    Parsley, B. S. (2018). Robotics in orthopedics: A brave new world. Journal of Arthroplasty,33(8), 2355–2357.PubMedCrossRefGoogle Scholar
  71. 71.
    Levy, J. C. (2019). Don’t lose sight of the outcome: Commentary on an article by Mariano E. Menendez, MD, et al.: “Negative Patient-Experience Comments After Total Shoulder Arthroplasty”. J Bone Joint Surg Am.,101(4), e15.PubMedCrossRefGoogle Scholar
  72. 72.
    Trends emerge in the Gartner Hype cycle for emerging technologies. (2018). Accessed 21 July 2018.
  73. 73.
    Bini, S. A. (2018). Artificial intelligence, machine learning, deep learning, and cognitive computing: what do these terms mean and how will they impact health care? Journal of Arthroplasty,33(8), 2358–2361.PubMedCrossRefGoogle Scholar
  74. 74.
    Froimson, M. I. (2018). Digital Health and advanced technology in arthroplasty. Journal of Arthroplasty,33(8), 2344.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Loh, E. (2018). Medicine and the rise of the robots: a qualitative review of recent advances of artificial intelligence in health. BMJ Leader,2(2), 59–63.CrossRefGoogle Scholar
  76. 76.
    Jones, L. D., Golan, D., Hanna, S. A., & Ramachandran, M. (2018). Artificial intelligence, machine learning and the evolution of healthcare: A bright future or cause for concern? Bone Joint Res.,7(3), 223–225.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Indian Orthopaedics Association 2020

Authors and Affiliations

  • Murali Poduval
    • 1
    Email author
  • Avik Ghose
    • 2
  • Sanjeev Manchanda
    • 3
  • Vaibhav Bagaria
    • 4
  • Aniruddha Sinha
    • 2
  1. 1.Tata Consultancy ServicesMumbaiIndia
  2. 2.TCS Research and InnovationTata Consultancy ServicesKolkataIndia
  3. 3.TCS Research and InnovationTata Consultancy ServicesMumbaiIndia
  4. 4.Reliance HN Foundation Hospital MumbaiMumbaiIndia

Personalised recommendations