Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Unraveling the effects of surface preparation on the pitting corrosion resistance of austenitic stainless steel

Abstract

The effects of surface preparation on the corrosion resistance of AISI 316L austenitic stainless steel were studied using the cyclic potentiodynamic polarization method. Grinding, mechanical polishing, and electropolishing were considered as the surface modifier methods. Regarding the surface roughness parameters, besides the conventional height parameter (Ra), the kurtosis (Rku) as the shape parameter was also considered to rationalize the pitting resistance for the first time. Based on the results of the Tafel extrapolation method, it was revealed that the uniform corrosion can be adequately correlated to Ra. However, the pitting resistance was found to mainly relate to the kurtosis, where by decreasing Rku (increased bluntness of topographic features), the pitting resistance enhanced. It was also found that a surface with Rku less than three (platykurtic) is resistant to pitting attack, where this surface can be obtained via electropolishing performed for an optimum time. The effect of electropolishing on the chromium content at the surface and its relation to the corrosion properties were also discussed.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Vignesh K, Perumal AE, Velmurugan P. Arch Civil Mech Eng. 2019;19:1029–42.

  2. 2.

    Kheiri S, Mirzadeh H, Naghizadeh M. Mater Sci Eng A. 2019;759:90–6.

  3. 3.

    Ziółkowski G, Chlebus E, Szymczyk P, Kurzac J. Arch Civil Mech Eng. 2014;14:608–14.

  4. 4.

    Xie W, Ding J, Wei X, Wang W, Xia G, Xing J. Energy Procedia. 2019;158:4897–902.

  5. 5.

    Talha M, Ma Y, Lin Y, Pan Y, Kong X, Sinha OP, Behera CK. Corros Rev. 2019;37:283–306.

  6. 6.

    Paul SC, van Zijl GPAG. Arch Civil Mech Eng. 2016;16:734–42.

  7. 7.

    Hinds G, Wickström L, Mingard K, Turnbull A. Corros Sci. 2013;71:43–52.

  8. 8.

    Hong T, Nagumo M. Corros Sci. 1997;39:1665–722.

  9. 9.

    Niranatlumpong P, Koiprasert H. Surf Coat Technol. 2006;201:737–43.

  10. 10.

    Lee SJ, Lai JJ. J Mater Process Technol. 2003;140:206–10.

  11. 11.

    Hilbert LR, Bagge-Ravnb D, Koldc J, Gram L. Int Biodeterior Biodegrad. 2003;52:175–85.

  12. 12.

    Zatkalíková V, Liptáková T. Mater Eng. 2011;18:115–20.

  13. 13.

    Yağan A. Int J Electrochem Sci. 2019;14:2906–13.

  14. 14.

    Hocheng H, Kao PS, Chen YF. J Mater Eng Perform. 2001;10:414–8.

  15. 15.

    Rokosz K, Hryniewicz T, Simon F, Rzadkiewicz S. Adv Mater Sci. 2015;15:21–9.

  16. 16.

    Ezuber H, Alshater A, Nisar SO, Gonsalvez A, Aslam S. Surf Eng Appl Electrochem. 2018;54:73–80.

  17. 17.

    Asami K, Hashimoto K. Corros Sci. 2003;45:2263–83.

  18. 18.

    Uno Y, Okada A, Uemura K, Raharjo P, Sano S, Yu Z, Mishima S. J Mater Process Technol. 2007;187:77–80.

  19. 19.

    Burstein GT, Pistorius PC. Corrosion. 1995;51:380–5.

  20. 20.

    Totten GE. ASM handbook, Volume 18: friction, lubrication, and wear technology. Cleveland: ASM International; 1992.

  21. 21.

    Bueno MJ, Borges DBV, Mansur FA, Schvartzman MMMA. Congresso Brasileiro de Engenharia e Ciência dos Materiais. Natal, RN, Brazil; 2016.

  22. 22.

    Naghizadeh M, Mirzadeh H. Metall Mater Trans A. 2016;47:4210–6.

  23. 23.

    Soleimani M, Mirzadeh H, Dehghanian C. Mater Res Express. 2020;7:016522.

  24. 24.

    Ferreira EA, Silva RCDC, Costa LA, de Oliveira CP, Silva GC, Paula ADS, Fugivara CS, Benedetti AV. Corros Eng Sci Technol. 2018;53:502–9.

  25. 25.

    Pahlavan S, Moayed MH, Mirjalili M. J Electrochem Soc. 2019;166:65–75.

  26. 26.

    Huang TS, Tsai WT, Pan SJ, Chang KC. Corros Eng Sci Technol. 2018;53:9–15.

  27. 27.

    Bellezze T, Viceré A, Giuliani G, Sorrentino E, Roventi G. Metals. 2018;8:244.

  28. 28.

    Bhushan B. Modern tribology handbook. 2nd ed. Florida: CRC Press; 2001.

  29. 29.

    Sohrabi MJ, Mirzadeh H, Rafiei M. Vacuum. 2018;154:235–43.

  30. 30.

    Liou HY, Hsieh RI, Tsai WT. Mater Chem Phys. 2002;74:33–42.

  31. 31.

    Lucas LC, Buchanan RA, Lemons JE, Griffin CD. J Biomed Mater Res. 1982;16:799–810.

  32. 32.

    Fontana MG. Corrosion engineering. New York: Tata McGraw-Hill Education; 2005.

  33. 33.

    Hryniewicz T, Rokosz K, Rokicki R. Corros Sci. 2008;50:2676–81.

  34. 34.

    Smialowska ZS. Pitting and crevice corrosion. Houston: NACE International; 2005.

  35. 35.

    Han Y, Han EH, Peng Q, Ke W. Corros Sci. 2017;121:1–10.

Download references

Acknowledgements

The authors greatly thank the members of the “Advanced Steels and Thermomechanically Processed Engineering Materials Laboratory” and the “Coating and Corrosion Lab” for their help and support. Financial support by the University of Tehran is also gratefully acknowledged.

Author information

Correspondence to H. Mirzadeh.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sohrabi, M.J., Mirzadeh, H. & Dehghanian, C. Unraveling the effects of surface preparation on the pitting corrosion resistance of austenitic stainless steel. Archiv.Civ.Mech.Eng 20, 8 (2020). https://doi.org/10.1007/s43452-020-0010-z

Download citation

Keywords

  • Stainless steels
  • Pitting corrosion
  • Surface treatments
  • Surface roughness
  • Potentiodynamic polarization test