Effect of 3-O-acetylaleuritolic acid from in vitro-cultured Drosera spatulata on cancer cells survival and migration

  • Ewa TotonEmail author
  • Izabela Kedziora
  • Aleksandra Romaniuk-Drapala
  • Natalia Konieczna
  • Mariusz Kaczmarek
  • Natalia Lisiak
  • Anna Paszel-Jaworska
  • Anna Rybska
  • Wiktoria Duszynska
  • Jaromir Budzianowski
  • Maria Rybczynska
  • Blazej Rubis



Drosera spatulata is a source of many compounds such as naphthoquinones, phenolic acids, flavonoids, anthocyanins, and naphthalene derivatives. Unfortunately, the information regarding the biological activity and chemical profile of those compounds is still incomplete. Herein, we investigated the biological activity of 3-O-acetylaleuritolic acid (3-O-AAA) in cancer cell lines.


The cell viability of HeLa, HT-29, MCF7, and MCF12A cells was assessed using MTT assay. Proliferation potential was assessed using the clonogenic assay and flow cytometry. Migration modulation was tested using a scratch assay. Protein expression was analyzed by immunoblotting.


3-O-AAA significantly inhibited the growth of all tested tumor cells. The results of the colony formation assay suggested cytostatic properties of the studied compound. The scratch assay showed that 3-O-AAA was an efficient migration inhibitor in a dose-dependent manner. Moreover, it caused modulation of mTOR, beclin1, and Atg5 proteins suggesting a possible role of the compound in autophagy induction.


Collectively, these results demonstrated that 3-O-AAA inhibited the proliferation and migration of cancer cell lines as well as contributed to autophagy induction showing some anticancer properties.

Graphic abstract


Drosera spatulata 3-O-acetylaleuritolic acid Migration Autophagy 



3-O-acetylaleuritolic acid




Dimethyl sulfoxide


3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide


Nuclear magnetic resonance


Phosphate-buffered saline


Proliferating cell nuclear antigen

WB technique

Western blot technique



This work was supported by the Poznan University of Medical Sciences, Grant Nos. 502-01-03318432-08035 and 502-14-03303407-09493.

Author contributions

ET planned experiments, was involved in the MTT and trypan blue test, Western blot analysis, the migration assay, and wrote the manuscript. AR contributed to the Western blot and statistical analyses. MK was involved in the flow cytometry analysis. NK and BR participated in the clonogenic assay. NL and APJ were involved in the preparation of the reagents/materials. IK and JB performed the extraction of 3-O-AAA acid from the cultures of Drosera spatulata, and MR and BR contributed to the conception and supervision of the study.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

43440_2019_8_MOESM1_ESM.docx (1.3 mb)
Supplementary material 1 (DOCX 1293 kb)


  1. 1.
    Zhang X, Chen LX, Ouyang L, Cheng Y, Liu B. Plant natural compounds: targeting pathways of autophagy as anti-cancer therapeutic agents. Cell Prolif. 2012;45:466–7.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Liu YQ, Tian J, Qian K, Zhao XB, Morris-Natschke SL, Yang L, et al. Recent progress on C-4-modified podophyllotoxin analogs as potent antitumor agents. Med Res Rev. 2015;35:1–62.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Gibson R. Carnivorous plants of New Zealand: a review. Carniv Pl Newslett. 1994;23(3):74–81.Google Scholar
  4. 4.
    Nakano M, Kinoshita E, Ueda K. Life history and coexistence of an amphidiploids, Drosera tokaiensis, and its parental species, D. rotundifolia and D. spatulata (Droseraceae). Plant Species Bio 2004;19:59–72.Google Scholar
  5. 5.
    Juniper BE, Robins RJ, Joel DM, editors. The carnivorous plants. London: Academic Press; Harcourt Brace Jovanovich; 1989.Google Scholar
  6. 6.
    Ferreira DTT, Andrei CC, Saridakis HO, Faria T, Vinhato E, Carvalho KE, et al. Antimicrobial activity and chemical investigation of Brazilian Drosera spp. Mem. Inst. Oswaldo Cruz Rio de Janeiro 2004;99:753–755.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Krenn L, Beyer G, Pertz HH, Karall E, Kremser M, Galambosi B, et al. In vitro antispasmodic and anti-inflammatory effects of Drosera rotundifolia. Arzneimittelforschung. 2004;54:402–5.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Fukushima K, Nagai K, Hoshi Y, Masumoto S, Mikami I, Takahashi Y, et al. Drosera rotundifolia and Drosera tokaiensis suppress the activation of HMC-1 human mast cells. J Ethnopharmacol. 2009;125:90–6.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Zenk MH, Fürbringer M, Steglich W. Occurrence and distribution of 7-methyljuglone and plumbagin in the droseraceae. Phytochemistry. 1969;8(11):2199–200.CrossRefGoogle Scholar
  10. 10.
    Culham A, Gornall RJ. The taxonomic significance of napthoquinones in the Droseraceae. Biochem Syst Ecol. 1994;22:507–15.CrossRefGoogle Scholar
  11. 11.
    Budzianowski J. Naphthouinones of Drosera spathulata from in vitro cultures. Phytochemistry. 1995;40:1145–8.CrossRefGoogle Scholar
  12. 12.
    Egan PA, van der Kooy F. Phytochemistry of the carnivorous Sundew genus Drosera (Droseraceae) future perspectives and ethnopharmacological. Chem Biodivers. 2013;10:1774–90.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Braunberger Ch, Zehl M, Conrad J, Wawrosch Ch, Strohbach J, Beifuss U, et al. Flavonoids as chemotaxonomic markers in the genus Drosera. Phytochemistry. 2015;118:74–82.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Budzianowski J, Skrzypczak L, Kukułczanka K. Phenolic compounds of Drosera intermedia and Drosera spatulata from in vitro culture. Acta Hortic. 1993;330:277–80.CrossRefGoogle Scholar
  15. 15.
    Zehl M, Braunberger C, Conrad J, Crnogorac M, Krasteva S, Vogler B, Beifuss U, et al. Identification and quantification of flavonoids and ellagic acid derivatives in therapeutically important Drosera species by LC-DAD, LC-NMR, NMR, and LC-MS. Anal Bioanal Chem. 2011;400(8):2565–76.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Ichiishi S, Nagamitsu T, Kondo Y, Iwashina T, Kondo K, Tagashira N. Effects of macro—components and sucrose in the medium on in vitro red—color pigmentation in Dionaea muscipula Ellis and Drosera spatulata Labill. Plant Biotechnol. 1999;16:235–8.CrossRefGoogle Scholar
  17. 17.
    McGaw LJ, Lall N, Hlokwe TM, Michel AL, Meyer JIM, Eloff JN. Purified compounds and extracts from Euclea species with antimycobacterial activity against Mycobacterium bovis and fast-growing mycobacteria. Biol Pharm Bull. 2008;31:1429–33.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Poppinga S, Hartmeyer S, Masselter T, Hartmeyer I, Speck T. Trap diversity and evolution in the family Droseraceae. Plant Signal Behav. 2013;8:e24685.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Mathabe MC, Hussein AA, Nikolova RV, Basson AE, Meyer JJ, Lall N. Antibacterial activities and cytotoxicity of terpenoids isolated from Spirostachys africana. J Ethnopharmacol. 2008;116:194–7.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Meyre-Silva C, Mora TC, Soares Santos A, Dal Magro J, Yunes RA, Delle Monache F, et al. A triterpene and flavonoid C-glycoside from Aleurites moluccana L. Willd. (Euphorbiaceae). Acta Farm. Bonaerense 1997;16(3):169–172.Google Scholar
  21. 21.
    Wada S, Tanada R. Isolation DNA topoisomerase-II inhibition, and cytotoxicity of three new terpenoids from the bark of Macaranga tonarius. Chem Biodivers. 2006;3:473–9.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Prabowo WC, Wirasutisna KR, Insanu M. Isolation and characterization of 3-acetyl aleuritolic acid and scopoletin from stem bark of Aleurites moluccana (L.) Willd. Int J Pharm Pharm Sci 2013;5:851–853.Google Scholar
  23. 23.
    Abega DF, Kapche DW, Ango PY, Mapitse R, Yeboah SO, Ngadjui BT. Chemical constituents of Croton oligandrum (Euphorbiaceae). Z Naturforsch C. 2014;69:181–5.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Torrance SJ, Wiedhopf RM, Cole JR. Antitumor agents from Jatropha macrorhiza (Euphorbiaceae) III: acetylaleuritolic acid. J Pharm Sci. 1977;66:1348–9.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    McLean S, Perpick-Dumont M, Reynolds WF, Jacobs H, Lachmansing SS. Unambiguous structural and nuclear magnetic resonance spectral characterization of two triterpenoids of Maprounea guianensis by two-dimensional nuclear magnetic resonance spectroscop. Can J Chem. 1987;65:2519–25.CrossRefGoogle Scholar
  26. 26.
    Pauli GF, Chen SN, Simmler Ch, Lankin DC, Gödecke T, Jaki BU, et al. Importance of purity evaluation and the potential of quantitative 1H NMR as a purity assay. J Med Chem. 2014;57:9220–31.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Lisiak N, Paszel-Jaworska A, Bednarczyk-Cwynar B, Zaprutko L, Kaczmarek M, Rybczyńska M. Methyl 3-hydroxyimino-11-oxoolean-12-en-28-oate (HIXOMOL), a synthetic oleanolic acid derivative, induces both apoptosis and autophagy in MDA-MB-231 breast cancer cells. Chem Biol Interact. 2014;208:47–57.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Michaelis UR. Mechanisms of endothelial cell migration. Cell Mol Life Sci. 2014;71:4131–48.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Clark AG, Vignjevic DM. Modes of cancer cell invasion and the role of the microenvironment. Curr Opin Cell Biol. 2015;36:13–22.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Kai FB, Laklai H, Weaver VM. Biomechanical regulation of cell invasion and migration in disease. Trends Cell Biol. 2016;26:486–97.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Roy-Luzarraga M, Hodivala-Dilke K. Molecular pathways: endothelial cell FAK—a target for cancer treatment. Clin Cancer Res. 2016;22:3718–24.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Golubovskaya VM, Kweh FA, Cance WG. Focal adhesion kinase and cancer. Histol Histopathol. 2009;24:503–10.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Zhao X, Guan JL. Focal adhesion kinase and its signaling pathways in cell migration and angiogenesis. Adv Drug Deliv Rev. 2011;63:610–5.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Tai YL, Chen LC, Shen TL. Emerging roles of focal adhesion kinase in cancer. Biomed Res Int. 2015;690690.Google Scholar
  35. 35.
    Lv PC, Jiang AQ, Zhang WM, Zhu HL. FAK inhibitors in Cancer, a patent review. Expert Opin Ther Pat. 2018;28:139–45.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Farahani E, Patra HK, Jangamreddy JR, Rashedi I, Kawalec M, Rao Pariti RK, et al. Cell adhesion molecules and their relation to (cancer) cell stemness. Carcinogenesis. 2014;35:747–59.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Rosse C, Formstecher E, Boeckeler K, Zhao Y, Kremerskothen J, White MD, et al. An aPKC-Exocyst complex controls Paxillin phosphorylation and migration through localised JNK1 activation. PLoS Biol. 2009;7:e1000235.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Kapinova A, Kubatka P, Liskova A, Baranenko D, Kruzliak P, Matta M, et al. Controlling metastatic cancer: the role of phytochemicals in cell signaling. J Cancer Res Clin Oncol. 2019;145(5):1087–109.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Wu C, Qiu S, Liu P, Ge Y, Gao X. Rhizoma Amorphophalli inhibits TNBC cell proliferation, migration, invasion and metastasis through the PI3K/Akt/mTOR pathway. J Ethnopharmacol. 2018;211:89–100.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Liu YZ, Yang CM, Chen JY, Liao JW, Hu ML. Alpha-carotene inhibits metastasis in Lewis lung carcinoma in vitro, and suppresses lung metastasis and tumor growth in combination with taxol in tumor xenografted C57BL/6 mice. J Nutr Biochem. 2015;26(6):607–15.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Cui J, Gong Z, Shen HM. The role of autophagy in liver cancer: molecular mechanisms and potential therapeutic targets. Biochim Biophys Acta. 2013;1836(1):15–26.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Thorburn A, Thamm DH, Gustafson DL. Autophagy and cancer therapy. Mol Pharmacol. 2014;85:830–8.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Giampieri F, Afrin S, Forbes-Hernandez TY, Gasparrini M, Cianciosi D, Reboredo-Rodriguez P, et al. Autophagy in human health and disease: novel therapeutic opportunities. Antioxid Redox Signal. 2019;30(4):577–634.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Zhu Y, Fang J, Wang H, Fei M, Tang T, Liu K, et al. Baicalin suppresses proliferation, migration, and invasion in human glioblastoma cells via Ca2+-dependent pathway. Drug Des Devel Ther. 2018;12:3247–61.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Yang ZJ, Chee CE, Huang S, Sinicrope FA. The role of autophagy in cancer: therapeutic implications. Mol Cancer Ther. 2011;10(9):1533–41.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Kapinova A, Stefanicka P, Kubatka P, Zubor P, Uramova S, Kello M, et al. Are plant-based functional foods better choice against cancer than single phytochemicals? A critical review of current breast cancer research. Biomed Pharmacother. 2017;96:1465–77.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Wang CY, Bai XY, Wang CH. Traditional Chinese medicine: a treasured natural resource of anticancer drug research and development. Am J Chin Med. 2014;42(3):543–59.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Maj Institute of Pharmacology Polish Academy of Sciences 2020

Authors and Affiliations

  • Ewa Toton
    • 1
    Email author
  • Izabela Kedziora
    • 2
  • Aleksandra Romaniuk-Drapala
    • 1
  • Natalia Konieczna
    • 1
  • Mariusz Kaczmarek
    • 3
  • Natalia Lisiak
    • 1
  • Anna Paszel-Jaworska
    • 1
  • Anna Rybska
    • 4
  • Wiktoria Duszynska
    • 4
  • Jaromir Budzianowski
    • 2
  • Maria Rybczynska
    • 1
  • Blazej Rubis
    • 1
  1. 1.Department of Clinical Chemistry and Molecular DiagnosticsPoznan University of Medical SciencesPoznanPoland
  2. 2.Department of Pharmaceutical BotanyPoznan University of Medical SciencesPoznanPoland
  3. 3.Department of Clinical ImmunologyPoznan University of Medical SciencesPoznanPoland
  4. 4.Poznan University of Medical SciencesPoznanPoland

Personalised recommendations