Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Influence of the Holocene relative sea level on the coastal plain of Sepetiba Bay (Southeast Brazil)

Abstract

This work analyzes the results of the SP2 core (50.30 m length) collected in the coastal plain of Sepetiba Bay (SB; SE Brazil), 2 km away from the Guandu River mouth (latitude 22° 55′S, longitude 43° 46′W). It aims to study the influence of the Holocene relative sea level (RSL) on the coastal plain of SB. After description, the SP2 core was sampled at every 5 cm for grain size, geochemical, mineralogical and foraminiferal analyses. Four radiocarbon dates obtained in the first 18 m were modulated with Bayesian statistics. The SP2 core is composed of basement rocks, gneisses (50.30–43.80 m); river sediments (43.80–21.00 m) up to about ≈ 5.0 kyr BP; a sediment package marked by sudden textural and compositional changes, accumulated between ≈ 5.0 and 4.7 kyr BP; muddy sediments deposited between 4.7 and 0.8 kyr BP (18.80–3.35 m) with intercalations of sandy levels; an upper part of disturbed embankment sediments used for the implantation of Santa Cruz Thermoelectric Power Plant. The fluvial sands accumulated before ≈ 5.0 kyr BP were deposited before the maximum Mid-Holocene relative sea level. They were probably eroded and transported by the drainage network of the N region of SB, namely by the Guandu River. Between ≈ 4.5 and 3.5 kyr BP, the foraminiferal abundance and assemblage composition indicate that the study site was a shallow marine environment, due to the Mid-Holocene relative sea-level highstands (MHSLH). Between ≈ 3.5 and 3.0 kyr BP, the sediment accumulation rate (SAR) was the lowest of the last ≈ 5 kyr BP and the study site was exposed to subaerial weathering processes, in a scenario of the relative sea-level drop. A new phase of marine influence was recorded between ≈ 3.0 and 1.9 kyr BP, associated with the highest SAR of this record, up to ≈ 27.4 m/kyr BP. Between ≈ 1.9 and 1.8 kyr BP, the study site was under subaerial weathering processes. Since then the SAR reduced significantly to a mean value of ≈ 4.5 m/kyr and, between ≈ 1.8 and 0.8 kyr BP, the study site was again under the marine influence. Foraminifera were not found, after ≈ 0.8 kyr BP, in the SP2 core. However, the occurrence of a shallow marine environment was identified in another core, between ≈ 1.4 and 0.35 kyr BP, in the Guaratiba Mangrove, NE of SB. The results of the SP2 core suggest that MHSLH left a striking record in the study area, although some of the identified environmental changes are probably related to adjustments of the lower course of Guandu River and tidal channels and variations in the configuration of sandy littoral strands. The growth of a barrier–island system, the Marambaia barrier island, since the last ≈ 8–7.5 kyr BP may also have induced changes in the study area.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Angulo, R. J., Giannini, P. C. F., Souza, M. C., & Lessa, G. C. (2016). Holocene paleo-sea level changes along the coast of Rio de Janeiro, southern Brazil: Comment on Castro et al. (2014). Anais da Academia Brasileira de Ciências,88(4), 2105-2011. https://doi.org/10.1590/0001-3765201620140641.

  2. Angulo, R. J., & Lessa, G. C. (1997). The Brazilian sea-level curves: a critical review with emphasis on the curve from Paranaguá and Cananéia regions. Marine Geology,140, 141–166.

  3. Angulo, R. J., Lessa, G. C., & Souza, M. C. (2006). A critical review of mid- to late-Holocene sea-level fluctuations on the eastern Brazilian coastline. Quaternary Science Reviews,25, 486–506. https://doi.org/10.1016/j.quascirev.2005.03.008.

  4. Angulo, R. J., Pessenda, L. C. R., & Souza, M. C. (2002). O significado das datações ao 14C na reconstrução de paleoníveis marinhos e na evolução das barreiras quaternárias do litoral paranaense. Revista Brasileira de Geociências,32(1), 95–106.

  5. Angulo, R. J., Souza, M. C., Assine, M. L., Pessenda, L. C. R., & Disaró, S. T. (2008). Chronostratigraphy and radiocarbon age inversion in the Holocene regressive barrier of Paraná, southern Brazil. Marine Geology,252, 111–119. https://doi.org/10.1016/j.margeo.2008.03.006.

  6. Asano, K. (1936). Pseudononion, a new genus of foraminifera found in Muraoka-mura, Kamakura-gori, Kanagawa Prefecture. The Journal of the Geological Society of Japan., 43(512), 347–348.

  7. Bandeira, J. V., Aun, P. E., Castro, J. O. N. M., & Moreira, R. M. (1984). Sepetiba Bay: An integrated study of an harbour location. Academia de Ciências do Estado de São Paulo (Brazil),4, 98–111.

  8. Bigarella, J. J. (1965). Subsídios para o estudo das variações do nível oceânico no Quaternário Brasileiro. Anais da Academia Brasileira de Ciências,37, 263–278.

  9. Bigarella, J. J. (1971). Variações climáticas no Quaternário Superior do Brasil e sua datação radiométrica pelo método do Carbono 14. Paleoclimas,1, 1–22.

  10. Bigarella, J. J. (1976). Considerações a respeito das variações de nível do mar e datações radiométricas. Cadernos de Arqueologia,1, 105–117.

  11. Bigarella, J. J., Salamuni, R., & Marques Filho, P. L. (1961). Método para avaliação de nível oceânico à época da formação dos terraços de construção marinha. Boletim Paranaense de Geografia,4–5, 111–115.

  12. Borges, H. V., & Nittrouer, C. A. (2015). The paleo-environmental setting of Sepetiba Bay, Rio de Janeiro, Brazil, in the Late Pleistocene: Interpretations from high-resolution seismic stratigraphy. Revista Brasileira de Geofísica,33(4), 565–578. https://doi.org/10.22564/rbgf.v33i4.762.

  13. Borges, H. V., & Nittrouer, C. A. (2016a). Sediment accumulation in Sepetiba Bay (Brazil) during the Holocene: A reflex of the human influence. Journal of Sedimentary Environments,1, 96–112. https://doi.org/10.12957/jse.2016.21868.

  14. Borges, H. V., & Nittrouer, C. A. (2016b). Coastal sedimentation in a tropical Barrier-Island system during the past century in Sepetiba Bay, Brazil. Anuário do Instituto de Geociências,39(2), 5–14. https://doi.org/10.11137/2016_2_05_14.

  15. Borrego, J., Lopez, M., Pedon, J.G., Morales, J.A. 1998. C/S ratio in estuarine sediments of the Odiel River to mouth, S.W. Spain. Journal of Coastal Research, 14 (4), 1276-1283.

  16. Bronk Ramsey, C. (2008). Deposition models for chronological records. Quaternary Science Review,27, 42–60. https://doi.org/10.1016/j.quascirev.2007.01.019.

  17. Bronk Ramsey, C. (2009). Bayesian analysis of radiocarbon dates. Radiocarbon,51, 337–360.

  18. Bronk Ramsey, C. 2010. OxCal v4.1.7. https://c14.arch.ox.ac.uk/login/login.php?Location=/oxcal/OxCal.html.

  19. Brönnimann, P., & Dias-Brito, D. (1982). New Lituolacea (Protista, Foraminiferida) from shallow waters of the Brazilian shelf. Journal of Foraminiferal Research,12, 13–23. https://doi.org/10.2113/gsjfr.12.1.13.

  20. Brönnimann, P., Moura, J. A., & Dias-Brito, D. (1981a). Estudos Ecológicos na Baía de Sepetiba, Rio de Janeiro, Brasil: Foraminíferos. Anais do Congresso Latino-Americano de Paleontologia (pp. 862–875). RS: Porto Alegre.

  21. Brönnimann, P., Moura, J. A., & Dias-Brito, D. (1981b). Foraminíferos da Fácies Mangue da Planície de Maré de Guaratiba, Rio, de Janeiro, Brasil. Anais do Congresso Latino-Americano de Paleontologia (pp. 878–891). RS: Porto Alegre.

  22. Caldas, L. H. O., Stattegger, K., & Vital, H. (2006). Holocene sea level history: evidence from coastal sediments of the northern Rio Grande do Norte Coast, NE Brazil. Marine Geology,228, 39–53. https://doi.org/10.1016/j.margeo.2005.12.008.

  23. Canfield, D. (1989). Sulphate reduction and oxic respiration in marine sediments: implications for organic preservation in euxinic environments. Deep Sea Research, part A,36, 121–138. https://doi.org/10.1016/0198-0149(89)90022-8.

  24. Carreño, A. L., Coimbra, J. C., & Carmo, D. A. (1999). Late Cenozoic sea level changes evidenced by ostracodes in the Pelotas basin, southernmost Brazil. Marine Micropaleontology,37, 117–129. https://doi.org/10.1016/S0377-8398(99)00014-6.

  25. Carreño, A. L., Coimbra, J. C., & Sanguinetti, Y. T. (1997). Biostratigraphy of the late Neogene and Quaternary Ostracodes from Pelotas Basin, Southern Brazil. Gaia,14, 33–43.

  26. Castro, J. W. A., Suguio, K., Seoane, J. C. S., Da Cunha, A. M., & Dias, F. F. (2014). Sea-level fluctuations and coastal evolution in the state of Rio de Janeiro, southeastern Brazil. Anais da Academia Brasileira de Ciências. https://doi.org/10.1590/0001-3765201420140007.

  27. Cole, W. S. (1931). The Pliocene and Pleisticene foraminifera of Florida. Tallahassee: Florida State Geol. Serv., Bull. no. 6

  28. Cooper, J. A. G., Meirelesc, R. P., Green, A. N., Kleinc, A. H. F., & Toldo, E. E. (2018). Late Quaternary stratigraphic evolution of the inner continental shelf in response to sea-level change, Santa Catarina, Brazil. Marine Geology,397, 1–14.

  29. Corrêa, I. C. S. (1996). Les variations du niveau de la mer durant les derniers 17,500 ans BP: l’exemple de la plate-forme continentale du Rio Grande do Sul, Brésil. Marine Geology,130, 163–178. https://doi.org/10.1016/0025-3227(95)00126-3.

  30. Cushman, J. A. (1922). Shallow-water foraminifera of the Tortugas Region (Vol. 17, pp. 1–85). Publications of Carnegie Institution of Washington, no. 311, Department of Marine Biology.

  31. Cushman, J. A. (1926). Recent Foraminifera from Porto Rico (Vol. 23). Publications of Carnegie Institution of Washington, no. 344.

  32. Cushman, J. A. (1936). Some new species of Elphidium and related genera. Contribution to Laboratory for Foraminiferal Research, 12(4), 78–89.

  33. Cushman, J. A., & Bermudez, P. J. (1946). A new genus, Cribripyrgo and a new species of Rotalia (Vol. 22). Contributions, Sharon, Massashusetts: Cushman Laboratory for Foraminifera Research.

  34. Cushman, J. A., & Bronnimann, P. (1948). Some new genera and species of Foraminifera from brackish water of Trinidad. Contribution to Laboratory for Foraminiferal Research, 24(1), 15–21.

  35. Dadalto, T. P. (2017). Arquitetura estratigráfica e evolução geológica da Restinga Da Marambaia (RJ). PhD Thesis, Universidade Federal Fluminense, Niterói, RJ, Brazil, 277 p.

  36. Debenay, J.-P., Duleba, W., Bonetti, C., Melo-E-Souza, S. H., & Eichler, B. B. (2001). Pararotalia cananeiaensis n. sp., indicator of marine influence and water circulation in Brazilian coastal and paralic environments. Journal of Foraminiferal Research,31(2), 152–163. https://doi.org/10.2113/0310152.

  37. Debenay, J.-P., Eichler, B. B., Duleba, W., Bonetti, C., & Eichler-Coelho, P. (1998). Water stratification in coastal lagoons: Its influence on foraminiferal assemblages in two Brazilian lagoons. Marine Micropaleontology,35, 67–98. https://doi.org/10.1016/S0377-8398(98)00011-5.

  38. Delibrias, C., & Laborel, J. (1969). Recent variations of the sea level along the Brazilian coast. Quaternaria,14, 45–49.

  39. DHN. (1986). (Diretoria de Hidrografia e Navegação). Tábuas das marés para o ano de 1990—costa do Brasil e portos estrangeiros. Marinha do Brasil, p. 255.

  40. d’Orbigny, A. (1839). Foraminifères. In R. de la Sagra (Ed.), Histoire physique politique et naturelle de l’Ile de Cuba. Paris: A. Bertrand.

  41. Dias, F. F. (2009). Variações do Nível Relativo do Mar na Planície Costeira de Cabo Frio e Armação dos Búzios, RJ: Reconstrução Paleoambiental Holocênica e Cenários Futuros. Doctoralthesis. Programa de Pós-Graduação em Geologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, p. 145.

  42. Dias, J. M. A., Boski, T., Rodrigues, A., & Magalhães, F. (2000). Coast line evolution in Portugal since the last glacial maximum until present—A synthesis. Marine Geology,170, 177–186.

  43. Dias-Brito, D., Moura, L. A., & Würdig, N. (1988). Relationships between ecological models based on Ostracodes and Foraminifers from Sepetiba Bay (Rio de Janeiro, Brazil). In T. Hanai, N. Ikeya, & K. Ishizai (Eds.), Developments in paleontology and stratigraphy (pp. 467–484). Amsterdam: Elsevier.

  44. Dominguez, J. M. L., Bittencourt, A. C. S. P., & Martin, L. (1981). Esquema evolutivo da sedimentação quaternária nas feições deltaicas dos rios São Francisco (SE-AL), Jequitinhonha (BA), Doce (ES) e Paraíba do Sul (RJ). Revista Brasileira Geociências, 11, 225–237.

  45. Dreimanis, A., Goldthwait, R.P., 1973. Wisconsin glaciation in the Huron, Erie and Ontario Lobes. In: Black, R. F., Goldthwait, R. P., Willman, H. B. (Eds.), The Wisconsinan Stage, Geological Society of America Memoir, 136, 71-106.

  46. Duleba, W. (1997). Variações nas associações de tecamebas, foraminíferos e ostracodes sub-recentes da região lagunar de Cananéia-Iguape, SP. PhD Thesis, Universidade de São Paulo, Brazil, p. 224.

  47. Duleba, W., & Debenay, J. P. (2003). Hydrodynamic circulation in the estuaries of Estação Ecológica Juréia-Itatins, Brazil, inferred from foraminifera and thecamoebian assemblages. Journal of Foraminiferal Research,33, 62–93.

  48. Duleba, W., Teodoro, A. C., Debenay, J.-P., Alves Martins, M. V., Gubitoso, S., Pregnolato, L. A., et al. (2018). Environmental impact of the largest petroleum terminal in SE Brazil: A multiproxy analysis based on sediment geochemistry and living benthic foraminifera. PLoS One,13(2), e0191446. https://doi.org/10.1371/journal.pone.0191446.

  49. Egler, C. A. G., & Gusmão, P. P. (2014). Região Metropolitana do Rio de Janeiro, Brasil. Revista de Gestão Costeira Integrada, RGCI,14(1), 65–80. https://doi.org/10.5894/rgci310.

  50. Fairbridge, R. W. (1961). Eustatic changes in sea level. Physics and chemistry of the earth (Vol. 4, pp. 99–185). London: Elsevier.

  51. Fatela, F., & Taborda, R. (2002). Confidence limits of species proportions in microfossil assemblages. Marine Micropaleontology,45, 169–174.

  52. Figueiredo Jr., A.G., Ivo, F.C., Guiro, P.P., Galea, C.G., Borges, H.V., Duque, H. (1989). Estratigrafia rasa da Baía de Sepetiba, RJ. In: Anais do Congresso da Sociedade Brasileira de Geologia, I, Rio de Janeiro, pp. 786–791.

  53. Folk, R. L., & Ward, W. C. (1957). Brazos River bar: A study in the significance of grain size parameters. Journal of Sedimentary Petrology,27, 3–26. https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D.

  54. Fornasini, C. (1904). Illustrazione di specie orbignyane di foraminiferi istituite nel 1826. Memorie della Reale Accademia delle Scienze dell'Istituto di Bologna, Classe di Scienze Fisiche. ser. 6 t. 1. https://www.biodiversitylibrary.org/page/38647167.

  55. Friederichs, Y. L., Reis, A. T., Silva, C. G., Toulemonde, B., Maia, R. M. C., & Guerra, J. V. (2013). Arquitetura sísmica do sistema flúvio-estuarino da Baía de Sepetiba preservado na estratigrafia rasa da plataforma adjacente, Rio de Janeiro, Brasil. Brazilian Journal of Geology,43, 124–138.

  56. Frontalini, F., Buosi, C., da Pelo, S., Coccioni, R., Cherchi, A., & Bucci, C. (2009). Benthic foraminifera as bio-indicators of heavy metal pollution in the heavily contaminated Santa Gilla lagoon (Cagliari, Italy). Marine Pollution Bulletin,58, 858–877.

  57. Guilderson, T. P., Burckle, L., Hemming, S., & Peltier, W. R. (2000). Late Pleistocene sea level variations derived from the Argentine Shelf. Geochemistry, Geophysics, Geosystems,1, 1055. https://doi.org/10.1029/2000GC000098.

  58. Haynes, J. R. (1973). Cardigan bay recent foraminifera (Cruises of the R. V. Antur, 1962–1964). Bulletin of the British Museum (Natural History ), Zoology (Supplement 4, pp. 1–245). https://biodiversitylibrary.org/page/44726681.

  59. Head, M.J., Gibbard, P.L. (2005). Early–Middle Pleistocene transitions: an overview and recommendation for the defining boundary. In: Head, M.J., Gibbard, P.L. (eds) Early–Middle Pleistocene Transitions: The Land–Ocean Evidence. Geological Society, London, Special Publications, 247, 1–18.

  60. Heilbron, M., Pedrosa-Soares, A.C., Campos Neto, M.D.C., Silva, L.D., Trouw, R.A.J., Janasi, V. (2004). Província Mantiqueira. In: V. Mantesso Neto, C. D. R. Carneiro, B. B. Brito-Neves (eds.) Geologia do continente sul-americano: evolução da obra de Fernando Flávio Marques de Almeida. São Paulo: Beca, pp. 203–235.

  61. Hein, C. J., Fitzgerald, D. M., Menezes, J. T., Cleary, W. J., & Klein, A. H. F. (2014). Coastal response to late-stage transgression and sea-level highstand. GSA Bulletin,126(3/4), 459–480.

  62. Heron-Allen, E., & Earland, A. (1909). On the recent and fossil Foraminifera of the shore-sands of Selsey Bill Sussex - IV. Journal of the Royal Microscopical Society, 677–698. https://www.biodiversitylibrary.org/page/2173646.

  63. Jesus, P. B., Dias, F. F., Muniz, R. A., Macário, K. C. D., Seoane, C. S., Quattrociocchi, D. G. S., et al. (2017). Holocene paleo-sea level in southeastern Brazil: An approach based on vermetids shells. Journal of Sedimentary Environments,2, 35–48.

  64. Klein, A. H. F., Short, A. D., Bonetti, J. (2016). Santa Catarina Beach Systems. 17. Brazilian Beach Systems, Coastal Research Library, pp. 465–506.

  65. Kohn, M. J., Riciputi, L. R., Stakes, D., & Orange, D. L. (1998). Sulfur isotope variability in biogenic pyrite: Reflections of heterogeneous bacterial colonization? American Mineralogist,83, 1454–1468. https://doi.org/10.2138/am-1998-11-1234.

  66. Kornfeld, M. M. (1931). Recent littoral foraminifera from Texas and Louisiana. Contributions from the Department of Geology of Stanford University, 1(3), 77–93.

  67. Kowsmann, O. R., & Costa, M. P. A. (1974). Paleolinhas de costa na plataforma continental das regiões sul e norte brasileiras. Revista Brasileira de Geociências,4, 215–222.

  68. Kowsmann, R. O., Costa, M. P. A., Vicalvi, M. A., Coutinho, M. G. N., Gamboa, L. A. P. (1977). Modelo de sedimentação holocênica na plataforma continental sul brasileira. In: Projeto REMAC: Evolução sedimentar holocênica da plataforma continental e do talude do sul do Brasil, Rio de Janeiro, Petrobrás/CENPES, 2, 7–26

  69. Lamego, A. R. (1945). Ciclo Evolutivo das Lagunas Fluminenses. Rio de Janeiro: DNPM/DGM, Boletim, 118, 48 p

  70. Laut, L. L. M., Koutsoukos, E. M. A., & Rodrigues, M. A. C. (2006). Review of mangrove foraminifera from Guaratiba tidal plain, Rio de Janeiro, SE Brazil collected in the early 70′s. Anuário do Instituto de Geociências-UFRJ,29, 427–428.

  71. Laut, L. L. M., Silva, F. S., Martins, V., Rodrigues, M. A. C., Mendonça, J. O., Clemente, I. M. M. M., et al. (2012). Foraminíferos do Complexo Sepetiba/Guaratiba. In M. A. C. Rodrigues, S. D. Pereira, & S. B. Santos (Eds.), Baía de Sepetiba: Estado da Arte (pp. 115–150). Rio de Janeiro: Corbã.

  72. Loeblich, A. R. Jr., Tappan, H. (1964). Sarcodina, chiefly Thecamoebians and Foraminiferida. In: Moore, R. C. (Ed.), Treatise on Invertebrate Paleontology, Geological Society of America, University of Kansas Press, vol. 1, pp. 511–900.

  73. Loeblich, A. R., & Tappan, H. (1988). Foraminiferal genera and their classification (p. 970). New York: Van Nostrand Reinhold.

  74. Mahiques, M. M., Mello e Sousa, S. H., Furtado, V. V., Tessler, M. G., Toledo, F. A. L., Burone, I., et al. (2010). The southern Brazilian shelf: General characteristics: Quaternary evolution and sediment distribution. Brazilian Journal of Oceanography,58(2), 25–34.

  75. Mahiques, M. M., Silveira, I. C. A., Sousa, S. H. M., & Rodrigues, M. (2002). Post-LGM sedimentation on the outer shelf-upper slope of the northernmost part of the São Paulo Bight, southeastern Brazil. Marine Geology,181, 387–400.

  76. Martin, L., Suguio, K., Flexor, J. M., Dominguez, J. M. L., & Bittencourt, A. C. S. P. (1996). Quaternary sea-level history and variations in dynamics along the Central Brazilian coast: consequences on coastal plain construction. Anais da Academia Brasileira de Ciências,68, 303–354.

  77. Martins, M. V. A., Hohenegger, J., Frontalini, F., Sequeira, C., Miranda, P., da Conceição Rodrigues, M. A., et al. (2019). Foraminifera check list and the main species distribution in the Aveiro Lagoon and Adjacent Continental Shelf (Portugal). Journal of Sedimentary Environments,4(1), 1–52. https://doi.org/10.12957/jse.2019.39308/.

  78. Martins, V., Dubert, J., Jouanneau, J. M., Weber, O., da Silva, E. F., Patinha, C., et al. (2007). A multiproxy approach of the Holocene evolution of shelf-slope circulation on the NW Iberian Continental Shelf. Marine Geology, 239(1–2), 1–18. https://doi.org/10.1016/j.margeo.2006.11.001.

  79. Martins, V. A., Silva, F., Lazaro, L. M. L., Frontalini, F., Clemente, I. M., Miranda, P., et al. (2015). Response of benthic foraminifera to organic matter quantity and quality and bioavailable concentrations of metals in Aveiro Lagoon (Portugal). PLoS One,10(2), e0118077. https://doi.org/10.1371/journal.pone.0118077.

  80. Milne, G. A., Long, A. J., & Bassett, S. E. (2005). Modelling Holocene relative sea-level observations from the Caribbean and South America. Quaternary Science Reviews,24, 1183–1202.

  81. Murray, J. W. (2006). Ecology and applications of benthic foraminifera. Cambridge: Cambridge University Press.

  82. Oliveira, A. F., da Rocha, P. L., Carelli, S. C., & Plastino, R. H. (2010). Investigações geofísicas visando a modelagem de cordões arenosos da Baía de Sepetiba, Itaguaí, Estado do Rio de Janeiro, Brasil. Anuário do Instituto de Geociências,33(1), 44–53.

  83. Pereira, E., Braga, P. M. C., Mendes, C. T., & Bergamashi, S. (2012). Sedimentação Quaternária na Planície Costeira de Jacarepaguá e Guaratiba (Estado do Rio de Janeiro). In M. A. C. Rodrigues, S. D. Pereira, & S. B. Santos (Eds.), Baía de Sepetiba: Estado da Arte (pp. 63–82). Rio de Janeiro: Corbã.

  84. Petri, S., & Suguio, K. (1971). Some aspects of the Neo-Cenozoic sedimentation in the Cananeia-Iguape lagoonal region, São Paulo, Brazil. Estudos Sedimentológicos,1, 25–33.

  85. Petri, S., & Suguio, K. (1973). Stratigraphy of the Iguape- Cananéia lagoonal region sedimentary deposits, São Paulo State, Brazil. Part II—Heavy minerals studies, microorganisms inventories and stratigraphical interpretations. Boletim do Instituto de Geociências da Universidade de São Paulo,4, 71–85.

  86. Pinto, A. F. S., Martins, M. V. A., Rodrigues, M. A. C., Nogueira, L., Laut, L. L. M., & Pereira, E. (2016). Late Holocene evolution of the Northeast intertidal region of Sepetiba Bay, Rio de Janeiro (Brazil). Journal of Sedimentary Environments,1(1), 107–138. https://doi.org/10.12957/jse.2016.21924.

  87. Pinto, A. F. S., Ramalho, J. C. M., Borghi, L., Carelli, T. G., Plantz, J. B., Pereira, E., et al. (2019). Background concentrations of chemical elements in Sepetiba Bay (SE Brazil). Journal of Sedimentary Environments,4(1), 108–123. https://doi.org/10.12957/jse.2019.40992.

  88. Ponçano, W. L., Fúlfaro, V. J., Gimenez, A. F. (1979). Sobre a Origem da Baía de Sepetiba e da Restinga da Marambaia, RJ. In: Anais do Simpósio Regional de Geologia, 2, Rio Claro, v. 1, pp. 291–304.

  89. Potratz, G. L., Souza e Almeida, F. S., Castro, J. W. A., Alves Martins, M. V. A., & Geraldes, M. G. (2019). Evolution and Paleoenvironmental Reconstitution of the Southern Zone of the Rio de Janeiro City (SE Brazil). Journal of Sedimentary Environments,4(2), 189–198. https://doi.org/10.12957/jse.2019.43766.

  90. Pregnolato, L. A., Viana, R. A., Passos, C. C., Misailidis, M. L., & Duleba, W. (2018). Ammonia-Elphidium index as a proxy for marine pollution assessment, Northeast Brazil. Journal of Sedimentary Environments,3(3), 176–186. https://doi.org/10.12957/jse.2018.38001.

  91. Raposo, D., Laut, V., Clemente, I., Martins, V., Frontalini, F., Silva, F., et al. (2016). Recent benthic foraminifera from the Itaipu Lagoon, Rio de Janeiro (southeastern Brazil). Check List,12(5), 1–14. https://doi.org/10.15560/12.5.1959.

  92. Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Ramsey, C. R., et al. (2013). IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon,55, 1869–1887. https://doi.org/10.2458/azu_js_rc.55.16947.

  93. Rocha, D. S., Cunha, B. C. A., Geraldes, M. C., Pereira, S. D., & Almeida, A. C. (2010). Metais pesados em sedimentos da baía de Sepetiba, RJ: implicações sobre fontes e dinâmica da distribuição pelas correntes de maré. Geochimica Brasiliensis,24(1), 63–70.

  94. Roncarati, H., & Barrocas, S. L. S. (1978). Estudo geológico preliminar dos sedimentos recentes superficiais da Baía de Sepetiba, Relatório Interno CENPES/PETROBRAS. Rio de Janeiro: Petrobras.

  95. Roncarati, H., & Carelli, S. G. (2012). Considerações sobre o estado da arte dos processos geológicos cenozóicos atuantes na Baía de Sepetiba. In M. A. C. Rodrigues, S. D. Pereira, & S. B. Santos (Eds.), Baía de Sepetiba: Estado da Arte (pp. 13–36). Rio de Janeiro: Corbã.

  96. Roncarati, H., & Menezes, L. F. T. (2005). Marambia, Rio de Janeiro: origem e evolução. In L. F. T. Menezes, A. L. Peixoto, & D. S. D. Araújo (Eds.), História Natural da Marambaia (p. 260). Seropédica: Universidade Federal Rural do Rio de Janeiro.

  97. Rouchy, J. M., Taberner, C., & Peryt, T. M. (2001). Sedimentary and diagenetic transitions between carbonates and evaporites. Sedimentary Geology,140, 1–8.

  98. Ruddiman, W. F., & McIntyre, A. (1981). The North Atlantic Ocean during the last deglatiation. Palaeogeography, Palaeoclimatology, Palaeoecology,35, 145–214.

  99. Sampaio, A. C. (2002). Considerações Sobre a Evolução Geológica e Geomorfológica Recente da Baía de Sepetiba—Litoral Sudeste do Estado do Rio de Janeiro. MsD Thesis, Universidade Federal do Rio de Janeiro, p 138.

  100. SEMADS. (2001). (Secretaria de Estado de Meio Ambiente e Desenvolvimento Sustentável). Manguezais: educar para proteger. Alves, J.R.P. (Org.), Rio de Janeiro: FEMAR: SEMADS, p. 96

  101. Semensatto-Jr, D. L., & Dias-Brito, D. (2004). Análise ambiental de uma área parálica no delta do Rio São Francisco, Sergipe-Brasil, com base na sinecologia de foraminíferos e tecamebas (Protista). Revista Brasileira de Paleontologia,7, 53–66.

  102. Silva, L. C. (2001). Geologia do Estado do Rio de Janeiro. CPRM DRM/RJ, p. 79.

  103. Stein, R. (1991). Accumulation of organic carbon in marine sediments. Results from the deep-sea drilling project/ocean drilling program. In S. Bhattacharji, G. M. Friedman, H. J. Neugebauer, & A. Seilacher (Eds.), Lecture notes in earth sciences. Berlin: Springer.

  104. Suguio, K. (2003). Geologia Sedimentar (1a ed., p. 324). São Paulo: Editora Edgard Blücher.

  105. Suguio, K. (2005). Introdução. In C. R. G. Souza, K. Suguio, M. A. S. Oliveira, & P. E. Oliveira (Eds.), Quaternário do Brasil (pp. 21–27). Holos: Ribeirão Preto.

  106. Suguio, K., Angulo, R. J. Carvalho, A. M., Corrêa, I. C. S., Tomazelli, L. J., Willwock, J. A., Vital, H. (2005). Paleoníveis do mar e paleolinhas de costa. In: Souza et al (ed) Quaternário do Brasil, Ribeirão Preto, Holos Editora, pp. 114–129.

  107. Suguio, K., Martin, L. (1976). Mecanismos de gênese das planícies sedimentares quaternárias do litoral do Estado de São Paulo. In: Anais do 29° Congresso Brasileiro de Geologia, Ouro Preto (MG). Anais, v.1, pp. 295–305.

  108. Suguio, K., Martin, L. 1978 a. Quaternary formations of the state of São Paulo and southern Rio de Janeiro. In: Publicação Especial nº 1, IV Simpósio do Quaternário no Brasil, Rio de Janeiro, Brazil, p. 14–15.

  109. Suguio, K., Martin, L. (1978). Mapas Geológicos do Litoral de São Paulo, Escala 1: 100 000. São Paulo, Secretaria de Obras e Meio Ambiente/Departamento de Águas e Energia Elétrica.

  110. Suguio, K., Martin, L. (1994). Geologia do Quaternário. In: Falconi, F.F., Negro Jr., A. (eds) Solos do Litoral Paulista, ABMS-ABGE, pp. 69–97.

  111. Suguio, K., Martin, L., Bittencourt, A. C. S. P., Dominguez, J. M. L., Flexor, J. M., & Azevedo, A. E. G. (1985). Flutuações do nível relativo do mar durante o quaternário superior ao longo do litoral brasileiro e suas implicações na sedimentação costeira. Revista Brasileira de Geociências,15(4), 273–286.

  112. Suguio, K., Tessler, M.G., 1984. Planícies de cordões litorâneos quaternários do Brasil: origem e nomenclatura. In: Universidade Federal Fluminense (ed), Restingas: origem, estrutura e processos, Niterói, UFF, pp. 15–25.

  113. Suguio, K., Vieira, E. M., Barcelos, J. H., & Silva, M. S. (1979). Interpretação ecológica dos foraminíferos de sedimentos modernos da Baía de Sepetiba e adjacências, Rio de Janeiro. Revista Brasileira de Geociências,9(4), 233–247.

  114. Talma, A. S., & Vogel, J. C. (1993). A simplified approach to calibrate C14 dates. Radiocarbon,35, 317–322.

  115. Van Voorthuysen, J. H. (1957) Foraminiferen aus dem Eemien (Riss-Würm-Interglazial) in der Bohrung Amersfoort I (Locus typicus). Netherlands: Geol. Stichting Meded. Haarlem, new ser, no. 11.

  116. Vicalvi, M. A. (1997). Zoneamento bioestratigráfico e paleoclimático dos sedimentos do Quaternário superior do talude da Bacia de Campos, RJ, Brasil. Boletim de Geociências da Petrobras,1, 132–165.

  117. Vicalvi, M. A., Costa, M. P. A., & Kowsmann, R. O. (1978). Depressão de Abrolhos: uma paleolaguna holocênica na plataforma continental leste brasileira. Boletim Técnico Petrobras,21, 279–286.

  118. Vicalvi, M. A., Kotzian, S. B., Fortiesteves, I. R. (1977). Ocorrência da microfauna estuarina no Quaternário da plataforma continental de São Paulo. PROJETO REMAC 2—Evolução Sedimentar Holocênica da Plataforma Continental e do Talude do Sul do Brasil. Rio de Janeiro, PETROBRÁS, CENPES, DINTEP, pp. 77–96.

  119. Villena, H. H. (2003). Baía de Sepetiba: considerações geológicas e oceanográficas com base em dados batimétrico e sedimentológicos. Anais do IX Congresso Brasileiro da Associação de Estudos do Quaternário, Mídia Digital (CD), pp. 20–29.

  120. Villena, H. H., Pereira, S. D., Chaves, H. A. F., Dias, M. S., & Guerra, J. V. (2012). Indícios da Variação do Nível do Mar na Baía de Sepetiba. In M. A. C. Rodrigues, S. D. Pereira, & S. B. Santos (Eds.), Baía de Sepetiba: Estado da Arte (pp. 39–82). Rio de Janeiro: Corbã.

  121. Villwock, J. A., Tomazelli, J. L., Dehnhardt, E. A., Horn Filho, N. O., Bachi, F. A., & Dehnhardt, B. A. (1986). Geology of the Rio Grande do Sul coastal province. Quaternary of South America and Antarctic Peninsula,4, 79–97.

  122. Walcott, R. I. (1972). Past sea levels, eustasy and deformation of the earth. Quaternary Research,2(1), 1–14. https://doi.org/10.1016/0033-5894(72)90001-4.

  123. Walker, M., Johnsen, S., Rasmussen, S. O., Pop, T., Steffensen, J.-P., Gibbard, P., et al. (2009). Formal definition and dating of the GSSP (Global Stratotype Section and Point) for the base of the Holocene using the Greenland NGRIP ice core, and selected auxiliary records. Journal of Quaternary Science,24, 3–17.

  124. Warren, J. K. (1989). Evaporite sedimentology. Prentice Hall Advanced Reference Series, Physical and Life Sciences (p. 285). Englewood Cliffs: Prentice Hall.

  125. Warren, J. K. (1999). Evaporites. Their Evolution and Economics. Oxford: Blackwell.

  126. Williamson, W. C. (1858). On the recent Foraminifera of Great Britain (pp. 1–107). London: The Ray Society.

  127. Yokoyama, Y., Lambeck, K., De Deckker, P., Johnston, P., & Fifield, L. K. (2000). Timing of the last glacial maximum from observed sea-level minima. Nature,406, 713–716.

  128. Zalán, P. V., & Oliveira, J. A. (2005). Origem e evolução estrutural do Sistema de Riftes Cenozoicos do Sudeste do Brasil. Boletim de Geociências da Petrobras,13(2), 269–300.

  129. Zaninetti, L., Brönnimann, P., Beurlen, G., & Moura, J. A. (1976). La Mangrove de Guaratiba et la Baie de Sepetiba, État de Rio de Janeiro, Brésil: Foraminifères et écologie. Note préliminaire. Archieves des Science,11, 39–44.

  130. Zaninetti, L., Brönnimann, P., Beurlen, G., & Moura, J. A. (1977). La Mangrove de Guaratiba et la Baie de Sepetiba, État de Rio de Janeiro, Brésil: Foraminifères et écologie. Archieves des Science,30, 161–178.

Download references

Acknowledgements

The authors would like to thank the Editor and the anonymous reviewers for their contribution for this work improvement. This paper is a contribution of the projects of Fundação Carlos Chagas Filho de Amparo à Pesquisa (FAPERJ) do Estado do Rio de Janeiro (FAPERJ; process # APQ1 E26/111.398/2014) and; of the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CnPQ, process # 443662/2018-5). Virginia Martins, Mauro Geraldes and Antonio Tadeu dos Reis would like to thank the CnPQ for the research grants (process # 301588/2016-3, process # 301470/2016-2 and process # 313086/2017-6, respectively). This work was also financed by Fundação para a Ciência e a Tecnologia (FCT, Portugal) through the strategic project UID/GEO/04035/2019. The authors would like to thank the Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro—FAPERJ—for the partial financial support of LGQM-UERJ, and to Mr Marcos Gonçalves of LGQM-UERJ and Gabriela Valdes of LGPA-UERJ for laboratory technical support.

Author information

Correspondence to Maria Virgínia Alves Martins.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by S. Sousa

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alves Martins, M.V., Pinto, A.F.S., Borghi, L. et al. Influence of the Holocene relative sea level on the coastal plain of Sepetiba Bay (Southeast Brazil). J. Sediment. Environ. (2020). https://doi.org/10.1007/s43217-019-00002-6

Download citation

Keywords

  • Holocene
  • Sea-level oscillation
  • Multiproxy approach
  • SW Atlantic coast
  • Bayesian modeling ages
  • Foraminifera
  • Sedimentological indicators