Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Recent advances in two-dimensional inorganic nanosheet-based supercapacitor electrodes

Abstract

Exfoliated two-dimensional (2D) nanosheets of inorganic solids exhibit various unique characteristics such as unusually high morphological and structural anisotropy, great diversity in composition and structure, and tunable physicochemical properties. The large 2D surface area and high electrochemical activity of inorganic nanosheets render them as potential materials for supercapacitor electrodes. The electrode performance of these nanosheets can be further improved by their hybridization with highly conductive and/or electrochemically active species. This review focuses on the application of 2D inorganic nanosheets as supercapacitor electrodes and versatile building blocks for synthesizing novel hybrid electrode materials. The crucial roles of 2D inorganic nanosheets in high-performance electrode materials for supercapacitors are discussed and several intriguing examples of 2D inorganic nanosheet-based electrode materials have also been provided. The perspective for future research in this field is discussed along with various strategies to optimize the electrode performance of 2D inorganic nanosheet-based hybrid materials.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

Adapted with permission from Ref. [49]

Fig. 4

Adapted with permission from Ref. [51]

Fig. 5

Adapted with permission from Ref. [55]

Fig. 6

Adapted with permission from Ref. [59]

Fig. 7

Adapted with permission from Ref. [65]

Fig. 8

Adapted with permission from Ref. [66]

Fig. 9

Adapted with permission from Ref. [70]

Fig. 10

Adapted with permission from Ref. [47]

References

  1. 1.

    S.-C. Kim, M.S. Islam, Application of exfoliated inorganic nanosheets for strongly-coupled hybrid photocatalysts. Solar RRL 2(9), 1800092 (2018)

  2. 2.

    G.R. Bhimanapati, Z. Lin, V. Meunier, Y. Jung, J. Cha, S. Das, D. Xiao, Y. Son, M.S. Strano, V.R. Cooper, L. Liang, S.G. Louie, E. Ringe, W. Zhou, S.S. Kim, R.R. Naik, B.G. Sumpter, H. Terrones, F. Xia, Y. Wang, J. Zhu, D. Akinwande, N. Alem, J.A. Schuller, R.E. Schaak, M. Terrones, J.A. Robinson, Recent advances in two-dimensional materials beyond graphene. ACS Nano 9(12), 11509–11539 (2015)

  3. 3.

    C. Tan, X. Cao, X.-J. Wu, Q. He, J. Yang, X. Zhang, J. Chen, W. Zhao, S. Han, G.-H. Nam, M. Sindoro, H. Zhang, Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117(9), 6225–6331 (2017)

  4. 4.

    Y.K. Jo, J.M. Lee, S. Son, S.-J. Hwang, 2D inorganic nanosheet-based hybrid photocatalysts: design, applications, and perspectives. J. Photochem. Photobiol. C: Photochem. Rev. 40, 150–190 (2019)

  5. 5.

    H. Li, X. Duan, X. Wu, X. Zhuang, H. Zhou, Q. Zhang, X. Zhu, W. Hu, P. Ren, P. Guo, L. Ma, X. Fan, X. Wang, J. Xu, A. Pan, X. Duan, Growth of alloy MoS2xSe2(1–x) nanosheets with fully tunable chemical compositions and optical properties. J. Am. Chem. Soc. 136(10), 3756–3759 (2014)

  6. 6.

    X. Zhou, J. Ling, W. Sun, Z. Shen, Fabrication of homogeneously Cu2+/La3+-doped CeO2 nanosheets and their application in CO oxidation. J. Mater. Chem. A 5(20), 9717–9722 (2017)

  7. 7.

    M.M. Chen, D. Wei, W. Chu, T. Wang, D.G. Tong, One-pot synthesis of O-doped BN nanosheets as a capacitive deionization electrode for efficient removal of heavy metal ions from water. J. Mater. Chem. A 5(32), 17029–17039 (2017)

  8. 8.

    C. Xu, S. Peng, C. Tan, H. Ang, H. Tan, H. Zhang, Q. Yan, Ultrathin S-doped MoSe2 nanosheets for efficient hydrogen evolution. J. Mater. Chem. A 2(16), 5597–5601 (2014)

  9. 9.

    M.S. Islam, M. Kim, X. Jin, S.M. Oh, N.-S. Lee, H. Kim, S.-J. Hwang, Bifunctional 2D superlattice electrocatalysts of layered double hydroxide-transition metal dichalcogenide active for overall water splitting. ACS Energy Lett. 3(4), 952–960 (2018)

  10. 10.

    Y.K. Jo, M. Kim, X. Jin, I.Y. Kim, J. Lim, N.-S. Lee, Y.K. Hwang, J.-S. Chang, H. Kim, S.-J. Hwang, Hybridization of a metal–organic framework with a two-dimensional metal oxide nanosheet: optimization of functionality and stability. Chem. Mater. 29(3), 1028–1035 (2017)

  11. 11.

    J.M. Lee, E.K. Mok, S. Lee, N.-S. Lee, L. Debbichi, H. Kim, S.-J. Hwang, A conductive hybridization matrix of RuO2 two-dimensional nanosheets: a hybrid-type photocatalyst. Angew. Chem. Inter. Ed. 55(30), 8546–8550 (2016)

  12. 12.

    J. Ryu, Y.J. Jang, S. Choi, H.J. Kang, H. Park, J.S. Lee, S. Park, All-in-one synthesis of mesoporous silicon nanosheets from natural clay and their applicability to hydrogen evolution. NPG Asia Mater. 8, e248 (2016)

  13. 13.

    M. Lee, Y. Seo, H.S. Shin, C. Jo, R. Ryoo, Anatase TiO2 nanosheets with surface acid sites for friedel-crafts alkylation. Micropor. Mesopor. Mater. 222, 185–191 (2016)

  14. 14.

    J.L. Gunjakar, T.W. Kim, I.Y. Kim, J.M. Lee, S.-J. Hwang, Highly efficient visible light-induced O2 generation by self-assembled nanohybrids of inorganic nanosheets and polyoxometalate nanoclusters. Sci. Rep. 3, 2080 (2013)

  15. 15.

    S. Gaber, D. Gaber, I. Ismail, S. Alhassan, M. Khaleel, Additive-free synthesis of house-of-card faujasite zeolite by utilizing aluminosilicate gel memory. CrystEngComm 21(11), 1685–1690 (2019)

  16. 16.

    T. Sasaki, M. Watanabe, Osmotic swelling to exfoliation. exceptionally high degrees of hydration of a layered titanate. J. Am. Chem. Soc. 120(19), 4682–4689 (1998)

  17. 17.

    A. Gupta, V. Arunachalam, S. Vasudevan, Liquid-phase exfoliation of MoS2 nanosheets: the critical role of trace water. J. Phys. Chem. Lett. 7(23), 4884–4890 (2016)

  18. 18.

    L. Yuwen, H. Yu, X. Yang, J. Zhou, Q. Zhang, Y. Zhang, Z. Luo, S. Su, L. Wang, Rapid preparation of single-layer transition metal dichalcogenide nanosheets via ultrasonication enhanced lithium intercalation. Chem. Commun. 52(3), 529–532 (2016)

  19. 19.

    M. Velický, P.S. Toth, A.M. Rakowski, A.P. Rooney, A. Kozikov, C.R. Woods, A. Mishchenko, L. Fumagalli, J. Yin, V. Zólyomi, T. Georgiou, S.J. Haigh, K.S. Novoselov, R.A.W. Dryfe, Exfoliation of natural Van der Waals heterostructures to a single unit cell thickness. Nat. Commun. 8, 14410 (2017)

  20. 20.

    X. Zhang, H. Yi, H. Bai, Y. Zhao, F. Min, S. Song, Correlation of montmorillonite exfoliation with interlayer cations in the preparation of two-dimensional nanosheets. RSC Adv. 7(66), 41471–41478 (2017)

  21. 21.

    Z. Li, Z. Liu, J. Zhang, B. Han, J. Du, Y. Gao, T. Jiang, Synthesis of single-crystal gold nanosheets of large size in ionic liquids. J. Phys. Chem. B 109(30), 14445–14448 (2005)

  22. 22.

    X. Zhang, Z. Zhang, J. Liang, Y. Zhou, Y. Tong, Y. Wang, X. Wang, Freestanding single layers of non-layered material γ-Ga2O3 as an efficient photocatalyst for overall water splitting. J. Mater. Chem. A 5(20), 9702–9708 (2017)

  23. 23.

    K. Yao, P. Chen, Z. Zhang, J. Li, R. Ai, H. Ma, B. Zhao, G. Sun, R. Wu, X. Tang, B. Li, J. Hu, X. Duan, X. Duan, Synthesis of ultrathin two-dimensional nanosheets and Van der Waals heterostructures from non-layered γ-CuI. NPJ 2D Mater. Appl. 2(1), 16 (2018)

  24. 24.

    A. Gupta, T. Sakthivel, S. Seal, Recent development in 2D materials beyond graphene. Progr. Mater. Sci. 73, 44–126 (2015)

  25. 25.

    B. Mendoza-Sánchez, Y. Gogotsi, Synthesis of two-dimensional materials for capacitive energy storage. Adv. Mater. 28(29), 6104–6135 (2016)

  26. 26.

    Z. Liu, X. Yuan, S. Zhang, J. Wang, Q. Huang, N. Yu, Y. Zhu, L. Fu, F. Wang, Y. Chen, Y. Wu, Three-dimensional ordered porous electrode materials for electrochemical energy storage. NPG Asia Mater. 11(1), 12 (2019)

  27. 27.

    W.-J. Liu, H. Jiang, H.-Q. Yu, Emerging applications of biochar-based materials for energy storage and conversion. Energy Environ. Sci. 12, 1751–1779 (2019)

  28. 28.

    J. Xu, J. Zhang, W. Zhang, C.-S. Lee, Interlayer nanoarchitectonics of two-dimensional transition-metal dichalcogenides nanosheets for energy storage and conversion applications. Adv. Energy Mater. 7(23), 1700571 (2017)

  29. 29.

    V. Augustyn, P. Simon, B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7(5), 1597–1614 (2014)

  30. 30.

    A. González, E. Goikolea, J.A. Barrena, R. Mysyk, Review on supercapacitors: technologies and materials. Renew. Sustain. Energy Rev. 58, 1189–1206 (2016)

  31. 31.

    L. Peng, Z. Fang, Y. Zhu, C. Yan, G. Yu, Holey 2D nanomaterials for electrochemical energy storage. Adv. Energy Mater. 8(9), 1702179 (2018)

  32. 32.

    K.S. Kumar, N. Choudhary, Y. Jung, J. Thomas, Recent advances in two-dimensional nanomaterials for supercapacitor electrode applications. ACS Energy Lett. 3(2), 482–495 (2018)

  33. 33.

    J.S. Son, X.-D. Wen, J. Joo, J. Chae, S.-I. Baek, K. Park, J.H. Kim, K. An, J.H. Yu, S.G. Kwon, S.-H. Choi, Z. Wang, Y.-W. Kim, Y. Kuk, R. Hoffmann, T. Hyeon, Large-scale soft colloidal template synthesis of 1.4 nm thick CdSe nanosheets. Angew. Chem. Int. Ed. 48(37), 6861–6864 (2009)

  34. 34.

    J.L. Gunjakar, T.W. Kim, H.N. Kim, I.Y. Kim, S.-J. Hwang, Mesoporous layer-by-layer ordered nanohybrids of layered double hydroxide and layered metal oxide: highly active visible light photocatalysts with improved chemical stability. J. Am. Chem. Soc. 133(38), 14998–15007 (2011)

  35. 35.

    D. Chen, L. Peng, Y. Yuan, Y. Zhu, Z. Fang, C. Yan, G. Chen, R. Shahbazian-Yassar, J. Lu, K. Amine, G. Yu, Two-dimensional holey Co3O4 nanosheets for high-rate alkali-ion batteries: from rational synthesis to in situ probing. Nano Lett. 17(6), 3907–3913 (2017)

  36. 36.

    W. Wang, Z. Li, A. Meng, Q. Li, Network-like holey NiCo2O4 nanosheet arrays on Ni foam synthesized by electrodeposition for high-performance supercapacitors. J. Solid State Electrochem. 23(2), 635–644 (2019)

  37. 37.

    K. Adpakpang, S.M. Oh, D.A. Agyeman, X. Jin, N. Jarulertwathana, I.Y. Kim, T. Sarakonsri, Y.-M. Kang, S.-J. Hwang, Holey 2D nanosheets of low-valent manganese oxides with an excellent oxygen catalytic activity and a high functionality as a catalyst for Li–O2 batteries. Adv. Funct. Mater. 28(17), 1707106 (2018)

  38. 38.

    B.E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (Plenum Press, New York, 1999)

  39. 39.

    K.W. Nam, H. Kim, J.H. Choi, J.W. Choi, Crystal water for high performance layered manganese oxide cathodes in aqueous rechargeable zinc batteries. Energy Environ. Sci. 12, 1999–2009 (2019)

  40. 40.

    D. Han, Y. Shen, Y. Pan, Z. Cheng, Y. Wei, G. Zeng, L. Mao, Ultralayered core-shell metal oxide nanosheet arrays for supercapacitors with long-term electrochemical stability. Sustain. Energy Fuels 2(9), 2115–2123 (2018)

  41. 41.

    J. Li, T. Zhang, C. Han, H. Li, R. Shi, J. Tong, B. Li, Crystallized lithium titanate nanosheets prepared via spark plasma sintering for ultra-high rate lithium ion batteries. J. Mater. Chem. A 7(2), 455–460 (2019)

  42. 42.

    K. Ramakrishnan, C. Nithya, R. Karvembu, High-performance sodium ion capacitor based on MoO2@rGO nanocomposite and goat hair derived carbon electrodes. ACS Appl. Energy Mater. 1(2), 841–850 (2018)

  43. 43.

    H. Liu, Y. Tang, C. Wang, Z. Xu, C. Yang, T. Huang, F. Zhang, D. Wu, X. Feng, A lyotropic liquid-crystal-based assembly avenue toward highly oriented vanadium pentoxide/graphene films for flexible energy storage. Adv. Funct. Mater. 27(12), 1606269 (2017)

  44. 44.

    J.-N. Zhang, P. Liu, L.-N. Jin, C. Jin, S.-W. Bian, Three-dimensional hierarchical NiCo2O4 nanosheets/carbon nanotubes/carbon cloth as a flexible electrode material for electrochemical capacitors. ChemistrySelect 2(27), 8618–8624 (2017)

  45. 45.

    X. Qiu, X. Zhang, L.-Z. Fan, In situ synthesis of a highly active Na2Ti3O7 nanosheet on an activated carbon fiber as an anode for high-energy density supercapacitors. J. Mater. Chem. A 6(33), 16186–16195 (2018)

  46. 46.

    Q. Jiang, N. Kurra, M. Alhabeb, Y. Gogotsi, H.N. Alshareef, All pseudocapacitive MXene-RuO2 asymmetric supercapacitors. Adv. Energy Mater. 8(13), 1703043 (2018)

  47. 47.

    J. Yan, C.E. Ren, K. Maleski, C.B. Hatter, B. Anasori, P. Urbankowski, A. Sarycheva, Y. Gogotsi, Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv. Funct. Mater. 27(30), 1701264 (2017)

  48. 48.

    M. Acerce, D. Voiry, M. Chhowalla, Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat. Nanotech. 10, 313 (2015)

  49. 49.

    M. Kang, Y. Wu, X. Huang, K. Zhou, Z. Huang, Z. Hong, Engineering of a TiO2 anode toward a record high initial coulombic efficiency enabling high-performance low-temperature Na-ion hybrid capacitors. J. Mater. Chem. A 6(45), 22840–22850 (2018)

  50. 50.

    X.-P. Chen, J. Wen, C.-X. Zhao, Y.-T. Li, N. Wang, Synthesis of core-shell structured MnO2 petal nanosheet@carbon sphere composites and their application as supercapacitor electrodes. ChemistrySelect 3(32), 9301–9307 (2018)

  51. 51.

    Z. Ma, F. Jing, Y. Fan, L. Hou, L. Su, L. Fan, G. Shao, High-stability MnOx nanowires@C@MnOx nanosheet core-shell heterostructure pseudocapacitance electrode based on reversible phase transition mechanism. Small 15(20), 1900862 (2019)

  52. 52.

    M.R. Kim, R.M. NaiduKalla, S. Kim, M.-R. Kim, I. Kim, NiMn2O4 nanosheet-decorated hierarchically porous polyaromatic carbon spheres for high-performance supercapacitors. ChemElectroChem 4(5), 1214–1221 (2017)

  53. 53.

    D. Jiang, M. Zheng, Y. You, L. Ma, P. Liu, F. Li, H. Yuan, Z. Zhai, L. Ma, W. Shen, NiO/NixCo3−xO4 porous ultrathin nanosheet/nanowire composite structures as high-performance supercapacitor electrodes. RSC Adv. 8(56), 31853–31859 (2018)

  54. 54.

    Q. Wang, Y. Ma, Y. Wu, D. Zhang, M. Miao, Flexible asymmetric threadlike supercapacitors based on NiCo2Se4 nanosheet and NiCo2O4/polypyrrole electrodes. ChemSusChem 10(7), 1427–1435 (2017)

  55. 55.

    X. Han, Y. Yang, J.-J. Zhou, Q. Ma, K. Tao, L. Han, Metal–organic framework templated 3D hierarchical ZnCo2O4@Ni(OH)2 core-shell nanosheet arrays for high-performance supercapacitors. Chem.: Eur. J. 24(68), 18106–18114 (2018)

  56. 56.

    Y. Teng, Y. Li, Z. Zhang, D. Yu, Y. Feng, Y. Meng, W. Tong, Y. Wu, X. Zhao, X. Liu, One-step controllable synthesis of mesoporous MgCo2O4 nanosheet arrays with ethanol on nickel foam as an advanced electrode material for high-performance supercapacitors. Chem.: Eur. J. 24(56), 14982–14988 (2018)

  57. 57.

    Y.L. Wu, W. Guo, X.J. Lian, Y.M. Tian, W.G. Wang, J.Y. Li, S. Wang, Self-assembled three-dimensional hierarchical CoMoO4 nanosheets on NiCo2O4 for high-performance supercapacitor. J. Alloys Compds. 793, 418–424 (2019)

  58. 58.

    D. Murugesan, S. Prakash, N. Ponpandian, P. Manisankar, C. Viswanathan, Two dimensional α-MoO3 nanosheets decorated carbon cloth electrodes for high-performance supercapacitors. Col. Surf. A Phys. Eng. Aspects 569, 137–144 (2019)

  59. 59.

    A.S. Etman, L. Wang, K. Edström, L. Nyholm, J. Sun, Molybdenum oxide nanosheets with tunable plasmonic resonance: aqueous exfoliation synthesis and charge storage applications. Adv. Funct. Mater. 29(4), 1806699 (2019)

  60. 60.

    X. Li, D. Du, Y. Zhang, W. Xing, Q. Xue, Z. Yan, Layered double hydroxides toward high-performance supercapacitors. J. Mater. Chem. A 5(30), 15460–15485 (2017)

  61. 61.

    J.E. Ten Elshof, H. Yuan, P. Gonzalez Rodriguez, Two-dimensional metal oxide and metal hydroxide nanosheets: synthesis, controlled assembly and applications in energy conversion and storage. Adv. Energy Mater. 6(23), 1600355 (2016)

  62. 62.

    X. Zang, C. Sun, Z. Dai, J. Yang, X. Dong, Nickel hydroxide nanosheets supported on reduced graphene oxide for high-performance supercapacitors. J. Alloys Compds. 691, 144–150 (2017)

  63. 63.

    Z. Li, F. Han, C. Li, X. Jiao, D. Chen, Multi-anion intercalated layered double hydroxide nanosheet-assembled hollow nanoprisms with improved pseudocapacitive and electrocatalytic properties. Chem. Asian J. 13(9), 1129–1137 (2018)

  64. 64.

    J. Zhao, Z. Li, X. Yuan, Z. Yang, M. Zhang, A. Meng, Q. Li, A high-energy density asymmetric supercapacitor based on Fe2O3 nanoneedle arrays and NiCo2O4/Ni(OH)2 hybrid nanosheet arrays grown on sic nanowire networks as free-standing advanced electrodes. Adv. Energy Mater. 8(12), 1702787 (2018)

  65. 65.

    Y.H. Kim, X. Jin, S.-J. Hwang, Fullerene as an efficient hybridization matrix for exploring high-performance layered-double-hydroxide-based electrodes. J. Mater. Chem. A 7(18), 10971–10979 (2019)

  66. 66.

    Y. Li, H. Wang, B. Huang, L. Wang, R. Wang, B. He, Y. Gong, X. Hu, Mo2C-induced solid-phase synthesis of ultrathin MoS2 nanosheet arrays on bagasse-derived porous carbon frameworks for high-energy hybrid sodium-ion capacitors. J. Mater. Chem. A 6(30), 14742–14751 (2018)

  67. 67.

    J. Balamurugan, C. Li, T.D. Thanh, O.-K. Park, N.H. Kim, J.H. Lee, Hierarchical design of Cu1−xNixS nanosheets for high-performance asymmetric solid-state supercapacitors. J. Mater. Chem. A 5(37), 19760–19772 (2017)

  68. 68.

    H. Peng, J. Zhou, K. Sun, G. Ma, Z. Zhang, E. Feng, Z. Lei, High-performance asymmetric supercapacitor designed with a novel NiSe@MoSe2 nanosheet array and nitrogen-doped carbon nanosheet. ACS Sustain. Chem. Eng. 5(7), 5951–5963 (2017)

  69. 69.

    L. Du, W. Du, H. Ren, N. Wang, Z. Yao, X. Shi, B. Zhang, J. Zai, X. Qian, Honeycomb-like metallic nickel selenide nanosheet arrays as binder-free electrodes for high-performance hybrid asymmetric supercapacitors. J. Mater. Chem. A 5(43), 22527–22535 (2017)

  70. 70.

    Z. Jiang, Y. Wang, S. Yuan, L. Shi, N. Wang, J. Xiong, W. Lai, X. Wang, F. Kang, W. Lin, C.P. Wong, C. Yang, Ultrahigh-working-frequency embedded supercapacitors with 1T phase mose2 nanosheets for system-in-package application. Adv. Funct. Mater. 29(9), 1807116 (2019)

  71. 71.

    C. Zhang, B. Anasori, A. Seral-Ascaso, S.-H. Park, N. McEvoy, A. Shmeliov, G.S. Duesberg, J.N. Coleman, Y. Gogotsi, V. Nicolosi, Transparent, flexible, and conductive 2D titanium carbide (MXene) films with high volumetric capacitance. Adv. Mater. 29(36), 1702678 (2017)

  72. 72.

    C. Zhang, M.P. Kremer, A. Seral-Ascaso, S.-H. Park, N. McEvoy, B. Anasori, Y. Gogotsi, V. Nicolosi, Stamping of flexible, coplanar micro-supercapacitors using Mxene inks. Adv. Funct. Mater. 28(9), 1705506 (2018)

  73. 73.

    B. Li, P. Gu, Y. Feng, G. Zhang, K. Huang, H. Xue, H. Pang, Ultrathin nickel–cobalt phosphate 2D nanosheets for electrochemical energy storage under aqueous/solid-state electrolyte. Adv. Funct. Mater. 27(12), 1605784 (2017)

  74. 74.

    L. Xie, Q. Zong, Q. Zhang, J. Sun, Z. Zhou, B. He, Z. Zhu, E. Songfeng, Y. Yao, Hierarchical NiCoP nanosheet arrays with enhanced electrochemical properties for high-performance wearable hybrid capacitors. J. Alloys Compds. 781, 783–789 (2019)

  75. 75.

    X. Li, H. Wu, A.M. Elshahawy, L. Wang, S.J. Pennycook, C. Guan, J. Wang, Cactus-like NiCoP/NiCo-OH 3D architecture with tunable composition for high-performance electrochemical capacitors. Adv. Funct. Mater. 28(20), 1800036 (2018)

  76. 76.

    N. Jabeen, A. Hussain, Q. Xia, S. Sun, J. Zhu, H. Xia, High-performance 2.6 V aqueous asymmetric supercapacitors based on in situ formed Na0.5MnO2 nanosheet assembled nanowall arrays. Adv. Mater. 29(32), 1700804 (2017)

  77. 77.

    L. Xing, Y. Dong, F. Hu, X. Wu, A. Umar, Co3O4 nanowire@NiO nanosheet arrays for high performance asymmetric supercapacitors. Dalton Trans. 47(16), 5687–5694 (2018)

  78. 78.

    M. Wang, Z. Li, C. Wang, R. Zhao, C. Li, D. Guo, L. Zhang, L. Yin, Novel core–shell FeOF/Ni(OH)2 hierarchical nanostructure for all-solid-state flexible supercapacitors with enhanced performance. Adv. Funct. Mater. 27(31), 1701014 (2017)

  79. 79.

    J. Yang, C. Wang, H. Ju, Y. Sun, S. Xing, J. Zhu, Q. Yang, Integrated quasiplane heteronanostructures of MoSe2/Bi2Se3 hexagonal nanosheets: synergetic electrocatalytic water splitting and enhanced supercapacitor performance. Adv. Funct. Mater. 27(31), 1703864 (2017)

  80. 80.

    K. Tao, X. Han, Q. Cheng, Y. Yang, Z. Yang, Q. Ma, L. Han, A zinc cobalt sulfide nanosheet array derived from a 2D bimetallic metal–organic frameworks for high-performance supercapacitors. Chem.: Eur. J. 24(48), 12584–12591 (2018)

  81. 81.

    J. Jiang, Y. Zhang, Y. An, L. Wu, Q. Zhu, H. Dou, X. Zhang, Engineering ultrathin MoS2 nanosheets anchored on N-doped carbon microspheres with pseudocapacitive properties for high-performance lithium-ion capacitors. Small Methods 20, 1900081 (2019)

  82. 82.

    S. Rafai, C. Qiao, M. Naveed, Z. Wang, W. Younas, S. Khalid, C. Cao, Microwave-anion-exchange route to ultrathin cobalt-nickel-sulfide nanosheets for hybrid supercapacitors. Chem. Eng. J. 362, 576–587 (2019)

Download references

Acknowledgments

This work was supported by a National Research Foundation of Korea (NRF) Grant funded by the government of Korea (MSIP) (no. NRF-2017R1A2A1A17069463) and by the Government of Korea (MSIT) (no. NRF-2017R1A5A1015365).

Author information

Correspondence to Seong-Ju Hwang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Oh, S.M., Hwang, S. Recent advances in two-dimensional inorganic nanosheet-based supercapacitor electrodes. J. Korean Ceram. Soc. (2020). https://doi.org/10.1007/s43207-020-00023-2

Download citation

Keywords

  • Capacitors
  • Nanocomposites
  • Electrical properties
  • Inorganic nanosheets
  • Electrode