Advertisement

Knie Journal

, Volume 1, Issue 1, pp 7–16 | Cite as

Korrektur knöcherner Deformitäten bei vorderer Instabilität: „Slope“ und „Varus thrust“

  • Wolf PetersenEmail author
  • Tilman Hees
  • Jörg Harrer
Leitthema
  • 53 Downloads

Zusammenfassung

Die Neigung des Tibiaplateaus in der Sagittalebene („Slope“) beeinflusst die Stabilität des Kniegelenks. Aufgrund der nach hinten abfallenden Gelenkfläche gleitet die Tibia unter Last nach anterior. Ein erhöhter „Slope“ kann daher zu vorderen Instabilitäten beitragen. Auch Deformitäten in der Frontalebene können eine Auswirkung auf die Stabilität des Kniegelenks haben. Anterolaterale Begleitinstabilitäten können bei vorbestehender ossärer Varusdeformität eine zusätzliche ligamentäre Varuskomponente induzieren (Doppelvarussituation). Das radiologische Klaffen des lateralen Gelenkspalts wird als „Varus-thrust“-Phänomen bezeichnet. Aus diesen Gründen müssen Deformitäten in der Sagittal- und Frontalebene bei der Therapie ligamentärer Instabilitäten beachtet werden. Das betrifft insbesondere Fälle, bei denen eine Bandplastik des vorderen Kreuzbands (VKB) bereits versagt hat (Revisionen). Zur Korrektur dieser Deformitäten eignen sich extendierende und valgisierende Tibiakopfosteotomien. Durch die Verwendung winkelstabiler Implantate zur Stabilisierung der Osteotomie ist meist eine frühfunktionelle Nachbehandlung möglich. Diese Eingriffe können einzeitig oder zweizeitig mit Kreuzbandplastiken kombiniert werden. Die bisherigen klinischen Erfahrungen mit diesen Eingriffen sind zwar limitiert, aber erfolgversprechend.

Schlüsselwörter

Knie Tibia Osteotomie Gelenkinstabilität Rekonstruktion vorderes Kreuzband 

Bony deformity correction and anterior instability: slope and varus thrust

Abstract

The inclination of the tibial plateau in the sagittal plane (slope) influences the stability of the knee joint. As a result of the posteriorly inclined articulating surface the tibia slides anteriorly under load. An increased slope can therefore contribute to anterior instabilities. But also deformities in the frontal plane can have an effect on the stability of the knee joint. Anterolateral accompanying instabilities can induce an additional ligamentous varus moment in the case of a pre-existing osseous varus deformity (double varus situation). The radiological gap of the lateral joint space is called the varus thrust phenomenon. For these reasons deformities in the sagittal and frontal plane have to be considered in the treatment of ligament instabilities. This applies particularly to cases in which an anterior cruciate ligament (ACL) plasty has already failed (revisions). Tibial osteotomies (extending and valgus) are suitable for the correction of these deformities. The use of angular-stable implants for the stabilization of the osteotomy allows an early rehabilitation under partial weight bearing. These procedures can be combined with one- or two-stage ACL reconstruction. To date the clinical experience with these interventions is limited but promising.

Keywords

Knee Tibia Osteotomy Joint instability Anterior cruciate ligament reconstruction 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

W. Petersen weist auf folgende Beziehungen hin: Beraterhonorare der Firmen Karl Storz und Otto Bock sowie Vortragshonorare der Firmen Plasmaconcept und AAP Implantate. T. Hees und J. Harrer geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Literatur

  1. 1.
    Agneskirchner JD, Hurschler C, Stukenborg-Colsman C, Imhoff AB, Lobenhoffer P (2004) Effect of high tibial flexion osteotomy on cartilage pressure and joint kinematics: a biomechanical study in human cadaveric knees. Winner of the AGA-DonJoy Award 2004. Arch Orthop Trauma Surg 124(9):575–584CrossRefPubMedGoogle Scholar
  2. 2.
    Arthur A, LaPrade RF, Agel J (2007) Proximal tibial opening wedge osteotomy as the initial treatment for chronic posterolateral corner deficiency in the varus knee: a prospective clinical study. Am J Sports Med 35:1844–1850CrossRefPubMedGoogle Scholar
  3. 3.
    Arun GR, Kumaraswamy V, Rajan D, Vinodh K, Singh AK, Kumar P, Chandrasekaran K, Santosh S, Kishore C (2016) Long-term follow up of single-stage anterior cruciate ligament reconstruction and high tibial osteotomy and its relation with posterior tibial slope. Arch Orthop Trauma Surg 136(4):505–511CrossRefPubMedGoogle Scholar
  4. 4.
    Badhe NP, Forster IW (2002) High tibial osteotomy in knee instability: the rationale of treatment and early results. Knee Surg Sports Traumatol Arthrosc 10:38–43CrossRefPubMedGoogle Scholar
  5. 5.
    Bernhardson AS, DePhillipo NN, Daney BT, Kennedy MI, Aman ZS, LaPrade RF (2019) Posterior tibial slope and risk of posterior cruciate ligament injury. Am J Sports Med 47(2):312–317.  https://doi.org/10.1177/0363546518819176 CrossRefPubMedGoogle Scholar
  6. 6.
    Bernhardson AS, DePhillipo NN, Aman ZS, Kennedy MI, Dornan GJ, LaPrade RF (2019) Decreased posterior tibial slope does not affect postoperative posterior knee laxity after double-bundle posterior cruciate ligament reconstruction. Am J Sports Med 47(2):318–323CrossRefPubMedGoogle Scholar
  7. 7.
    Brandon ML, Haynes PT, Bonamo JR, Flynn MI, Barrett GR, Sherman MF (2006) The association between posterior-inferior tibial slope and anterior cruciate ligament insufficiency. Arthroscopy 22(8):894–899CrossRefPubMedGoogle Scholar
  8. 8.
    Dejour H, Neyret P, Boileau P, Donell ST (1994) Anterior cruciate reconstruction combined with valgus tibial osteotomy. Clin Orthop Relat Res 299:220–228Google Scholar
  9. 9.
    Dejour D, Saffarini M, Demey G, Baverel L (2015) Tibial slope correction combined with second revision ACL produces good knee stability and prevents graft rupture. Knee Surg Sports Traumatol Arthrosc 23(10):2846–2852CrossRefPubMedGoogle Scholar
  10. 10.
    Diermeier T, Imhoff AB, Beitzel K (2017) Flexion and extension osteotomy of the knee. Oper Orthop Traumatol.  https://doi.org/10.1007/s00064-017-0499 CrossRefPubMedGoogle Scholar
  11. 11.
    Diermeier T, Beitzel K, Imhoff AB, Achtnich A, Petersen W (2018) Rolle der Extensionsosteotomei bei vorderen Instabilitäten. Arthroskopie 31(3):240–224CrossRefGoogle Scholar
  12. 12.
    Feucht MJ, Mauro CS, Brucker PU, Imhoff AB, Hinterwimmer S (2013) The role of the tibial slope in sustaining and treating anterior cruciate ligament injuries. Knee Surg Sports Traumatol Arthrosc 21(1):134–145CrossRefPubMedGoogle Scholar
  13. 13.
    Gwinner C, Weiler A, Roider M, Schaefer FM, Jung TM (2017) Tibial slope strongly influences knee stability after posterior cruciate ligament reconstruction: a prospective 5‑ to 15-year follow-up. Am J Sports Med 45(2):355–361CrossRefPubMedGoogle Scholar
  14. 14.
    Giffin JR, Stabile KJ, Zantop T, Vogrin TM, Woo SL, Harner CD (2007) Importance of tibial slope for stability of the posterior cruciate ligament deficient knee. Am J Sports Med 35(9):1443–1449CrossRefPubMedGoogle Scholar
  15. 15.
    Haddad B, Konan S, Mannan K, Scott G (2012) Evaluation of the posterior tibial slope on MR images in different population groups using the tibial proximal anatomical axis. Acta Orthop Belg 78(6):757–763PubMedGoogle Scholar
  16. 16.
    Hashemi J, Chandrashekar N, Gill B, Beynnon BD, Slauterbeck JR, Schutt RC Jr et al (2008) The geometry of the tibial plateau and its influence on the biomechanics of the tibiofemoral joint. J Bone Joint Surg Am 90(12):2724–2734CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Hees T, Petersen W (2018) Anterior closing-wedge osteotomy for posterior slope correction. Arthrosc Tech 7(11):e1079–e1087CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Kean CO, Birmingham TB, Garland JS et al (2009) Moments and muscle activity after high tibial osteotomy and anterior cruciate ligament reconstruction. Med Sci Sports Exerc 41:612–619CrossRefPubMedGoogle Scholar
  19. 19.
    Kim SE, Pozzi A, Kowaleski MP, Lewis DD (2008) Tibial osteotomies for cranial cruciate ligament insufficiency in dogs. Vet Surg 37(2):111–125CrossRefPubMedGoogle Scholar
  20. 20.
    LaPrade RF, Engebretsen L, Johansen S, Wentorf FA, Kurtenbach C (2008) The effect of a proximal tibial medial opening wedge osteotomy on posterolateral knee instability: a biomechanical study. Am J Sports Med 36:956–960CrossRefPubMedGoogle Scholar
  21. 21.
    Lattermann C, Jakob RP (1996) High tibial osteotomy alone or combined with ligament reconstruction in anterior cruciate ligament-deficient knees. Knee Surg Sports Traumatol Arthrosc 4:32–38CrossRefPubMedGoogle Scholar
  22. 22.
    Marriott K, Birmingham TB, Kean CO, Hui C, Jenkyn TR, Giffin JR (2015) Five-year changes in gait biomechanics after concomitant high tibial osteotomy and ACL reconstruction in patients with medial knee osteoarthritis. Am J Sports Med 43:2277–2285CrossRefPubMedGoogle Scholar
  23. 23.
    MARS Group, Wright RW, Huston LJ et al (2010) Descriptive epidemiology of the Multicenter ACL Revision Study (MARS) cohort. Am J Sports Med 38:1979–1986CrossRefGoogle Scholar
  24. 24.
    Naudie DD, Amendola A, Fowler PJ (2004) Opening wedge high tibial osteotomy for symptomatic hyperextension-varus thrust. Am J Sports Med 32:60–70CrossRefPubMedGoogle Scholar
  25. 25.
    Noyes FR, Barber-Westin SD, Hewett TE (2000) High tibial osteotomy and ligament reconstruction for varus angulated anterior cruciate ligament-deficient knees. Am J Sports Med 28:282–296CrossRefPubMedGoogle Scholar
  26. 26.
    Noyes FR, Barber-Westin SD (2005) Posterior cruciate ligament revision reconstruction, part 1: causes of surgical failure in 52 consecutive operations. Am J Sports Med 33:646–654CrossRefPubMedGoogle Scholar
  27. 27.
    Noyes FR, Barber-Westin SD, Albright JC (2006) An analysis of the causes of failure in 57 consecutive posterolateral operative procedures. Am J Sports Med 34:1419–1430CrossRefPubMedGoogle Scholar
  28. 28.
    Nunley RM, Nam D, Johnson SR, Barnes CL (2014) Extreme variability in posterior slope of the proximal tibia: measurements on 2395 CT scans of patients undergoing UKA? J Arthroplasty 29(8):1677–1680CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Petersen W, Hees T, Karpinski K, Bierke S (2017) Knöcherne Deformitätenkorrektur bei vorderer Instabilität?: „Slope“ und „varus thrust“. Sportorthopädie Sporttraumatologie 33(4):379–391Google Scholar
  30. 30.
    Reichwein F, Nebelung W (2007) High tibial flexion osteotomy for revision of posterior cruciate ligament instability. Unfallchirurg 110:597–602 (in German)CrossRefPubMedGoogle Scholar
  31. 31.
    Schatka I, Weiler A, Jung TM, Walter TC, Gwinner C (2018) High tibial slope correlates with increased posterior tibial translation in healthy knees. Knee Surg Sports Traumatol Arthrosc 26(9):2697–2703CrossRefPubMedGoogle Scholar
  32. 32.
    Shelburne KB, Kim HJ, Sterett WI, Pandy MG (2011) Effect of posterior tibial slope on knee biomechanics during functional activity. J Orthop Res 29:223–231CrossRefPubMedGoogle Scholar
  33. 33.
    Sonnery-Cottet B, Mogos S, Thaunat M, Archbold P, Fayard JM, Freychet B, Clechet J, Chambat P (2014) Proximal tibial anterior closing wedge osteotomy in repeat revision of anterior cruciate ligament reconstruction. Am J Sports Med 42(8):1873–1880CrossRefPubMedGoogle Scholar
  34. 34.
    Tischer T, Paul J, Pape D, Hirschmann MT, Imhoff AB, Hinterwimmer S, Feucht MJ (2017) The impact of osseous Malalignment and realignment procedures in knee ligament surgery: a systematic review of the clinical evidence. Orthop J Sports Med.  https://doi.org/10.1177/2325967117697287 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    van de Pol GJ, Arnold MP, Verdonschot N, van Kampen A (2009) Varus alignment leads to increased forces in the anterior cruciate ligament. Am J Sports Med 37(3):481–487CrossRefPubMedGoogle Scholar
  36. 36.
    Wang YL, Yang T, Zeng C, Wei J, Xie DX, Yang YH, Long HZ, Xu B, Qian YX, Jiang SD, Lei GH (2017) Association between tibial plateau slopes and anterior cruciate ligament injury: a meta-analysis. Arthroscopy 33(6):1248–1259CrossRefPubMedGoogle Scholar
  37. 37.
    Webb JM, Salmon LJ, Leclerc E, Pinczewski LA, Roe JP (2013) Posterior tibial slope and further anterior cruciate ligament injuries in the anterior cruciate ligament-reconstructed patient. Am J Sports Med 41(12):2800–2804CrossRefPubMedGoogle Scholar
  38. 38.
    Williams RJ 3rd, Kelly BT, Wickiewicz TL, Altchek DW, Warren RF (2003) The short-term outcome of surgical treatment for painful varus arthritis in association with chronic ACL deficiency. J Knee Surg 16:9–16PubMedGoogle Scholar
  39. 39.
    Wordeman SC, Quatman CE, Kaeding CC, Hewett TE (2012) In vivo evidence for tibial plateau slope as a risk factor for anterior cruciate ligament injury: a systematic review and meta-analysis. Am J Sports Med 40(7):1673–1681CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Zaffagnini S, Bonanzinga T, Grassi A et al (2013) Combined ACL reconstruction and closing-wedge HTO for varus angulated ACL-deficient knees. Knee Surg Sports Traumatol Arthrosc 21:934–941CrossRefPubMedGoogle Scholar
  41. 41.
    Zeng C, Cheng L, Wei J, Gao SG, Yang TB, Luo W, Li YS, Xu M, Lei GH (2014) The influence of the tibial plateau slopes on injury of the anterior cruciate ligament: a meta-analysis. Knee Surg Sports Traumatol Arthrosc 22(1):53–65CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH 2019

Authors and Affiliations

  1. 1.Klinik für Orthopädie und UnfallchirurgieMartin-Luther-KrankenhausBerlin GrunewaldDeutschland
  2. 2.Klinik für Orthopädie und UnfallchirurgieREGIOMED Klinikum LichtenfelsLichtenfelsDeutschland

Personalised recommendations