Advertisement

The essential norm of the integral type operators

  • Xiaoman Liu
  • Yongmin LiuEmail author
  • Lina Xia
  • Yanyan Yu
Original Paper

Abstract

On the basis of the characterizations of the boundedness and compactness of the Volterra type operator \(I_{g, \varphi }\) from mixed-norm spaces \(H(p,\, q,\, \phi )\) to Zygmund spaces \( \mathcal {Z}\), the authors provide a function-theoretic estimate for the essential norm of Volterra type operator \(I_{g, \varphi }\) by means of the definition of the essential norm of an operator and the properties of the analytic function. An estimate for the essential norm of the generalized integration operator
$$\begin{aligned} I^{(n)}_{g, \varphi }f(z)=\int ^{z}_{0}f^{(n)}(\varphi (\xi ))g(\xi )d\xi , \ z\in \mathbb {D}, \end{aligned}$$
from Bloch-type spaces to F(pqs) spaces is also obtained.

Keywords

Essential norm Mixed-norm space Zygmund space Volterra type operator Generalized integral operator 

Mathematics Subject Classification

47B38 47B33 30H10 30D45 

Notes

Acknowledgements

The authors are very grateful to anonymous referees and editors for their valuable and detailed suggestions and insightful comments to improve the original manuscript. The project is supported by the Natural Science Foundation of China (Grant nos. 11771184, 11771188) and the Foundation Research Project of Jiangsu Province of China (no. BK20161158).

Author Contributions

All authors contributed equally to the writing of this paper. They also read and approved the final manuscript.

References

  1. 1.
    Chen, C., Zhou, Z.: Essential norms of generalized composition operators between Bloch-type spaces in the unit ball. Complex Var. Elliptic Equ. 60(5), 696–706 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Colonna, F., Tjani, M.: Operator norms and essential norms of weighted composition operators between Banach spaces of analytic functions. J. Math. Anal. Appl. 434(1), 93–124 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Contreras, M., Peláez, J., Pommerenke, C., Rättyä, J.: Integral operators mapping into the space of bounded analytic functions. J. Funct. Anal. 271(10), 2899–2943 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Duren, P.: Theory of \(H^p\) Spaces. Academic Press, New York (1970)zbMATHGoogle Scholar
  5. 5.
    Esmaeili, K., Lindström, M.: Weighted composition operators between Zygmund type spaces and their essential norms. Integr. Equ. Oper. Theory. 75(4), 473–490 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Galindo, P., Laitila, J., Lindström, M.: Essential norm estimates for composition operators on \(BMOA\). J. Funct. Anal. 265(4), 629–643 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Guo, J., Liu, Y.: Generalized integration operators from mixed-norm to Zygmund-type spaces. Bull. Malays. Math. Sci. Soc. 39(3), 1043–1057 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    He, Z., Cao, G.: Generalized integration operator between Bloch-type spaces and \(F(p, q, s)\) spaces. Taiwan. J. Math. 17(4), 1211–1225 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Hibschweiler, R.A., Portnoy, N.: Composition followed by differentiation between Bergman and Hardy spaces. Rocky Mt. J. Math. 35(3), 843–855 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Li, S., Qian, R., Zhou, J.: Essential norm and a new characterization of weighted composition operators from weighted Bergman spaces and Hardy spaces into the Bloch space. Czechoslov. Math. J. 67(3), 629–643 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Li, S., Stević, S.: Volterra-type operators on Zygmund spaces. J. Inequal. Appl. Article ID 32124, 10 (2007)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Liu, X., Li, S.: Norm and essential norm of a weighted composition operator on the Bloch space. Integr. Eqn. Oper. Theory 87(3), 309–325 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Liu, Y., Liu, H.: Volterra-type composition operators from mixed norm spaces to Zygmund spaces. Acta. Math. Sin. Chin. Ser. 54(3), 381–396 (2011)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Liu, Y., Liu, X., Yu, Y.: On an extension of Stevic-Sharma operator from the mixed-norm space to weighted-type spaces. Complex Var. Elliptic Equ. 62(5), 670–694 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Lindström, M., Makhmutov, S., Taskinen, J.: The essential norm of a Bloch-to-\(Q_p\) composition operator. Can. Math. Bull. 47(1), 49–59 (2004)zbMATHCrossRefGoogle Scholar
  16. 16.
    Ohno, S.: Products of composition and differentiation between Hardy spaces. Bull. Aust. Math. Soc 73(2), 235–243 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Pau, J.: Composition operator between Bloch-type spaces and Möbius invariant \(Q_K\) spaces. Rocky Mt. J. Math. 39(6), 2051–2065 (2009)zbMATHCrossRefGoogle Scholar
  18. 18.
    Pau, J.: Integration operators between Hardy spaces on the unit ball. J. Funct. Anal. 270(1), 134–176 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Pérez-González, F., Rättyä, J.: Forelli-Rudin estimates, Carleson measures and \(F(p, q, s)\) -functions. J. Math. Anal. Appl. 315(2), 394–414 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Sharma, S., Sharma, A.: Generalized integration operators from Bloch type spaces to weighted \(BMOA\) spaces. Demonstr. Math. 44(2), 373–390 (2011)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Shields, A.L., Williams, D.L.: Bounded projections, duality, and multipliers in spaces of analytic functions. Trans. Am. Math. Soc. 162, 287–302 (1971)zbMATHGoogle Scholar
  22. 22.
    Stević, S.: Weighted differentiation composition operators from mixed-norm spaces to weighted-type spaces. Appl. Math. Comput. 211(1), 222–233 (2009)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Yamashita, S.: Gap series and \(\alpha \)-Bloch functions. Yokohama. Math. J. 28, 31–36 (1980)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Yang, W.: Volterra composition operators from \(F(p, q, s)\) spaces to Bloch-type spaces. Bull. Malays. Math. Sci. Soc. (2) 34(2), 267–277 (2011)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Zhao, R.: On a general family of function space, Ann. Acad. Sci. Fenn. Math. Dissertationes, (1996)Google Scholar
  26. 26.
    Zhou, J., Liu, Y.: Products of radial derivative and multiplication operator between mixed norm spaces and Zygmund-type spaces on the unit ball. Math. Inequal. Appl. 17(1), 349–366 (2014)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Zhu, K.: Bloch type spaces of analytic functions. Rocky Mt. J. Math. 23(3), 1143–1177 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Zhu, X.: An integral-type operator from \(H^\infty \) to Zygmund-type spaces. Bull. Malays. Math. Sci. Soc. (2) 35(3), 679–686 (2012)MathSciNetzbMATHGoogle Scholar

Copyright information

© Tusi Mathematical Research Group (TMRG) 2019

Authors and Affiliations

  1. 1.College of SciencesNanjing Agricultural UniversityNanjingChina
  2. 2.School of Mathematics and StatisticsJiangsu Normal UniversityXuzhouChina
  3. 3.School of Mathematics and Physics ScienceXuzhou Institute of TechnologyXuzhouChina

Personalised recommendations