Advertisement

Products of asymmetric truncated Toeplitz operators

  • Ameur YagoubEmail author
Original Paper

Abstract

This paper is concerned with asymmetric truncated Toeplitz operators, which are compressions of multiplication operators acting between two model spaces. We give necessary and sufficient conditions so that the product of two asymmetric truncated Toeplitz operators is also an asymmetric truncated Toeplitz operator. Then we define analogue classes to the Sedlock classes, which consist on the algebras of truncated Toeplitz operators, and deal with the case of two inner functions such that one divides the other. Some examples of the product of rank-one asymmetric truncated Toeplitz operators involving inner functions are also given.

Keywords

Model spaces Truncated Toeplitz operator Asymmetric truncated Toeplitz operator Product of asymmetric truncated Toeplitz operators 

Mathematics Subject Classification

47A05 

References

  1. 1.
    Ahern, P.R., Clark, D.N.: Radial limits and invariant subspaces. Amer. J. Math. 92, 332–342 (1970)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Baranov, A., Bessonov, R., Kapustin, V.: Symbols of truncated Toeplitz operators. J. Funct. Anal. 261, 3437–3456 (2011)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Câmara, C., Jurasik, J., K-Garlicka, K., Ptak, M.: Characterizations of asymmetric truncated Toeplitz operators. Banach J. Math. Anal 11(4), 899–922 (2017)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Câmara, C., Partington, J.R.: Spectral properties of truncated Toeplitz operators by equivalence after extension. J. Math. Anal. Appl. 433(2), 762–784 (2016)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Câmara, M.C., Partington, J.R.: Asymmetric truncated Toeplitz operators and Toeplitz operators with matrix symbol. J. Oper. Theory 77(2), 455–479 (2017)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Chalendar, I., Timotin, D.: Commutation relations for truncated Toeplitz operators. Oper. Matrices 8(3), 877–888 (2014)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Cima, J.A., Garcia, S.R., Ross, W.T., Wogen, W.R.: Truncated Toeplitz operators: spatial isomorphism, unitary equivalence, and similarity. Indiana Univ. Math. J 59(2), 595–620 (2010)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Garcia, S.R., Mashreghi, J.E., Ross, W.: Introduction to Model Spaces and their Operators. Cambridge Studies in Advanced mathematics, University Press, Cambridge (2016) Google Scholar
  9. 9.
    Jurasik, J., Lanucha, B.: Asymmetric truncated Toeplitz operators equal to the zero operator. Ann. Univ. Mariae Curie Sklodowska Sect. A 70(2), 51–62 (2016)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Jurasik, J., Lanucha, B.: Asymmetric truncated Toeplitz operators on finite-dimensional spaces. Oper. Matrices 11(1), 245–262 (2017)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Lanucha, B.: Asymmetric truncated Toeplitz operators on finite-dimensional spaces II, in press, arXiv:1611.01231
  12. 12.
    Lanucha, B.: On rank-one asymmetric truncated Toeplitz operators on finite-dimensional model spaces. J. Math. Anal. Appl. 454, 961–980 (2017)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Sarason, D.: Algebraic properties of truncated Toeplitz operators. Oper. Matrices 1(4), 491–526 (2007)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Sedlock, N.A.: Algebras of truncated Toeplitz operators. Oper. Matrices 5, 309–326 (2011)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Yagoub, A., Zarrabi, M.: Semigroups of truncated Toeplitz operators. Oper. Matrices 12(3), 603–618 (2018)MathSciNetCrossRefGoogle Scholar

Copyright information

© Tusi Mathematical Research Group (TMRG) 2020

Authors and Affiliations

  1. 1.Laboratory of Pure and Applied MathematicsUniversity Amar Telidji of LaghouatLaghouatAlgeria

Personalised recommendations