Inner functions in \(W_{\alpha }\) as improving multipliers

  • Juan Du
  • Liu YangEmail author
Original Paper


In this article, we give some characterizations of the inner functions in the space of \(W_{\alpha }\). Meanwhile, the zero sets in \(W_{\alpha }\) are also studied.


Dirichlet space \(\mathcal {D}_{\alpha }\) \(W_{\alpha }\) space Inner functions Carleson–Newman sequences Zero set Improving 

Mathematics Subject Classification

30D45 30D50 


  1. 1.
    Blasi, D., Pau, J.: A characterization of Besov-type spaces and applications to Hankel-type operators. Michigan Math. J. 56, 401–417 (2008)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Dyakonov, K.M.: Division and multiplication by inner functions and embedding theorems for star-invariant subspaces. Am. J. Math. 115, 881–902 (1993)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Dyakonov, K.M.: Smooth functions and coinvariant subspaces of the shift operator. St. Petersburg Math. J. 4, 933–959 (1993)MathSciNetGoogle Scholar
  4. 4.
    Dyakonov, K.M.: Besov spaces and outer functions. Michigan Math. J. 45, 143–157 (1998)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Dyakonov, K.M.: Holomorphic functions and quasiconformal mappings with smooth moduli. Adv. Math. 187, 146–172 (2004)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Dyakonov, K.M.: Self-improving behaviour of inner functions as multipliers. J. Funct. Anal. 240, 429–444 (2006)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Dyakonov, K.M., Girela, D.: On \(Q_p\) spaces and pseudoanalytic extension. Ann. Acad. Sci. Fenn. Ser. A Math. 25, 477–486 (2000)zbMATHGoogle Scholar
  8. 8.
    Marshall, D.E., Sundberg, C.: Interpolating sequences for the multipliers of the Dirichlet space, manuscript (1994)Google Scholar
  9. 9.
    McDonald, G., Sundberg, C.: Toeplitz operators on the disc. Indiana Univ. J. Math. 28, 595–611 (1979)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Pau, J., Pelez, J.: On the zeros of functions in Dirichlet-type spaces. Trans. Am. Math. Soc. 363, 1981–2002 (2011)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Pelez, J.: Inner functions as improving multipliers. J. Funct. Anal. 255, 1403–1418 (2008)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Rochberg, R., Wu, Z.: A new characterization of Dirichlet type spaces and applications. Ill. J. Math. 37, 101–122 (1993)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Shapiro, H.S., Shields, A.L.: On the zeros of functions with finite Dirichlet integral and some related function spaces. Math. Z. 80, 217–229 (1962)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Wu, Z.: The predual and second predual of Wa. J. Fund. Anal. 116, 314–334 (1993)CrossRefGoogle Scholar
  15. 15.
    Wu, Z.: Carleson measures and multipliers for Dirichlet spaces. J. Funct. Anal. 169, 148–163 (1999)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Xiao, J.: Holomorphic \({\cal{Q}}\) classes. Lecture notes in mathematics 1767. Springer, Berlin (2001)CrossRefGoogle Scholar
  17. 17.
    Xiao, J.: Geometric \({\cal{Q}}\) functions. Birkhäuser, Basel (2006)Google Scholar
  18. 18.
    Zhao, R.: Distances from Bloch functions to some Möbius invariant spaces. Ann. Acad. Sci. Fenn. Math. 33, 303–313 (2008)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Zhu, K.: Operator theory in function spaces. Marcel Dekker, New York (1990)zbMATHGoogle Scholar
  20. 20.
    Zhu, K.: Operator theory in function spaces. American Mathematical Society, Providence (2007)CrossRefGoogle Scholar

Copyright information

© Tusi Mathematical Research Group (TMRG) 2019

Authors and Affiliations

  1. 1.Department of MathematicsShanxi Xueqian Normal UniversityXianChina

Personalised recommendations