2-Local uniform isometries between complex Lipschitz algebras

  • Davood AlimohammadiEmail author
  • Reyhaneh Bagheri
Original Paper


Let (Xd) be a metric space and let \(\mathrm{Lip}(X,d) \) denote the complex algebra of all complex-valued bounded functions f on X for which f is a Lipschitz function on \(\mathrm{(X,d)}\). In this paper we give a complete description of all 2-local real and complex uniform isometries between \(\mathrm{Lip}(X,d) \) and \(\mathrm{Lip(Y},\rho \mathrm{)}\), where (Xd) and \((Y,\rho )\) are compact metric spaces. In particular, we show that every 2-local real (complex, respectively) uniform isometry from \(\mathrm{Lip}(X,d) \) to \(\mathrm{Lip(Y,}\rho \mathrm{)}\) is a surjective real (complex, respectively) linear uniform isometry.


Banach algebra 2-local isometry Linear isometry Lipschitz homeomorphism 

Mathematics Subject Classification

47B38 46J10 



The authors would like to thank the referee for his/her valuable comments and suggestions.


  1. 1.
    Alimohammadi, D., Pazandeh, H.: 2-local isometries between Banach algebras of continuous functions with involution, Banach J. Math. Anal. (Accepted) Google Scholar
  2. 2.
    Cabello, J.C., Peralta, A.M.: On a generalized Šemrl’s theorem for weak-2-local derivations on \( B(H)\). Banach J. Math. Anal. 11(2), 382–397 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Fošner, A.: 2-local mapping on algebras with involution. Ann. Funct. Anal. 5(1), 63–69 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Györy, M.: 2-local isometries of \(C_0(X)\). Acta Sci. Math. (Sezeged) 67, 735–746 (2001)zbMATHGoogle Scholar
  5. 5.
    Hatori, O., Miura, T., Oka, H., Takagi, H.: 2-local isometries and 2-local automorphisms on uniform algebras. Int. Math. Forum 50(2), 2491–2502 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Hatori, O., Oi, S.: 2-local isometries on function spaces, Preprint. arXiv:1812.10342v2 (2018)
  7. 7.
    Hosseini, M.: Generalized 2-local isometries of spaces of continuously differentiable functions. Quaest. Math. 40(8), 1003–1014 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Jamshidi, A., Sady, F.: Real-linear isometries between certain subspaces of continuous functions. Cent. Eur. J. Math. 11(11), 2034–2043 (2013)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Jiménez-Vargas, A., Villegas-Vallecillos, M.: Into linear isometries between spaces of Lipschitz functions. Houston J. Math. Bull. 34(4), 1165–1184 (2008)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Jiménez-Vargas, A., Villegas-Vallecillos, M.: 2-Local isometries on spaces of Lipschitz functions. Can. Math. Bull. 54, 680–692 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Li, L., Peralta, A.M., Wang, L., Wang, Y.-S.: Weak-2-local isometries on uniform algebras and Lipschitz algebras. Publ. Mat. 63, 241–264 (2019)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Mazur, S., Ulam, S.: Sur les transformations isométriques d’espaces vectoriels normés. C. R. Math. Acad. Sci. Paris 194, 946–948 (1932)zbMATHGoogle Scholar
  13. 13.
    Molnár, L.: 2-local isometries of some operator algebras. Proc. Edinb. Math. Soc. 45, 349–352 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Pazandeh, H., Alimohammadi, D.: Surjective real-linear uniform isometries between complex function algebras. Sahand Commun. Math. Anal. 13(1), 213–240 (2019)zbMATHGoogle Scholar
  15. 15.
    Šemrl, P.: Local automorphisms and derivations on B(H). Proc. Am. Math. Soc. 125, 2677–2680 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Weaver, N.: Isometries of noncompact Lipschitz spaces. Can. Math. Bull. 38(2), 242–249 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Weaver, N.: Lipschitz Algebras, 2nd edn. World Scientific, New Jersey (2018)zbMATHCrossRefGoogle Scholar

Copyright information

© Tusi Mathematical Research Group (TMRG) 2019

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of ScienceArak UniversityArakIran

Personalised recommendations