Additivity of maps preserving Jordan triple products on prime \(C^*\)-algebras

  • Ali TaghaviEmail author
  • Ensiyeh Tavakoli
Original Paper


Let \( \mathcal {A} \) and \(\mathcal {B}\) be two unital \(C^*\)-algebras such that \( \mathcal {A} \) contains a non-trivial projection \(P_1\). In this paper, we investigate the additivity of maps \( \varPhi \) from \(\mathcal {A}\) onto \(\mathcal {B}\) that are bijective maps, that satisfy
$$\begin{aligned} \varPhi \left( \frac{AB^*C+CB^*A}{2} \right) =\frac{\varPhi (A)\varPhi (B)^*\varPhi (C)+\varPhi (C)\varPhi (B)^*\varPhi (A)}{2} \end{aligned}$$
for every \( A, B, C\in \mathcal {A}\). Moreover if \( \mathcal {B} \) is a prime \(C^*\)-algebra and \( \varPhi (I)\) is a positive element, then \( \varPhi \) is a \(*\)-isomorphism.


Preservers Jordan triple Prime \(C^*\)-algebra 

Mathematics Subject Classification

46J10 47B48 



The authors would like to thank anonymous reviewer for a thorough and detailed report with many helpful comments and suggestions.


  1. 1.
    Darvish, V., Nazari, H.M., Rohi, H., Taghavi, A.: Maps preserving \(\eta \)-product \(AP+\eta PA^*\) on \(C^*\) algebras. J. Korean Math. Soc. 54(3), 867–876 (2017)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Essaleh, A.B.A., Peralta, A.M.: Preservers of \( \lambda \)-Aluthge transforms. Linear Algebra Appl. 554, 86–119 (2018)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Friedman, Y., Hakeda, J.: Additivity of quadratic maps. Publ. Res. Inst. Math. Sci. 24(5), 707–722 (1988)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Friedman, Y., Russo, B.: Solution of the contractive projection problem. J. Funct. Anal. 60(1), 56–79 (1985)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Garcia, M.C., Palacios, A.: Non-ssociative Normed Algebras. Vol. 1, vol. 154 of Encyclopedia of Mathematics and Its Applications, The Vidav–Palmer and Gelfand–Naimark Theorems. Cambridge University Press, Cambridge (2014)Google Scholar
  6. 6.
    Garcia, M.C., Palacios, A.: Non-associative Normed Algebras. Vol. 2, vol. 167 of Encyclopedia of Mathematics and its Applications, Representation theory and the Zel’manov approach. Cambridge University Press, Cambridge (2018)Google Scholar
  7. 7.
    Hakeda, J.: Additivity of Jordan \(*\)-maps on \(AW^*\)-algebras. Proc. Lond. Math. Soc. 96(3), 413–420 (1986)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Hakeda, J.: Additivity of \(*\)-semigroup isomorphisms among \(*\)-algebras. Bull. Lond. Math. Soc. 18(1), 51–56 (1986)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Hakeda, J., Saito, K.: Additivity of Jordan \(*\)-maps between operator algebras. J. Math. Soc. Jpn. 38(3), 403–408 (1986)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Harris, L.A.: A generalization of \(C^*\)-algebras. Proc. Lond. Math. Soc. 3(2), 331–361 (1981)CrossRefGoogle Scholar
  11. 11.
    Kaup, W.: A Riemann mapping theorem for bounded symmetric domains in complex Banach spaces. Math. Z. 183(4), 503–529 (1983)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Kaup, W.: Contractive projections on Jordan \(C^*\)-algebras and generalizations. Math. Scand. 54(1), 95–100 (1984)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Li, P., Lu, F.: Additivity elementary maps on rings. Commun. Algebra 32(10), 3725–3737 (2004)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Liu, L., Ji, G.X.: Maps preserving product \(XY+YX^*\) on factor von Neumann algebras. Linear Multilinear Algebra 59(9), 951–955 (2011)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Russo, B.: Structure of \(JB^*\) triples Jordan Algebras (W. Kaup, K. McCrimmon, H.P. Petterson, eds.), de Gruyter, (1994)Google Scholar
  16. 16.
    Stacho, L.L.: A projection principle concerning biholomorphic automorphisms of Banach spaces. Acta Sci. Math. 44, 99–124 (1982)MathSciNetzbMATHGoogle Scholar

Copyright information

© Tusi Mathematical Research Group (TMRG) 2019

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of Mathematical SciencesUniversity of MazandaranBabolsarIran

Personalised recommendations