Advertisement

Refinements and higher-order beliefs: a unified survey

  • Atsushi Kajii
  • Stephen Morris
Special Section: Article Fundamental Issues in Game Theory and Market Design
  • 16 Downloads

Abstract

This paper presents a simple framework that allows us to survey and relate some different strands of the game theory literature. We describe a “canonical” way of adding incomplete information to a complete information game. This framework allows us to give a simple “complete theory” interpretation (Kreps in Game theory and economic modelling. Clarendon Press, Oxford, 1990) of standard normal form refinements such as perfection, and to relate refinements both to the “higher-order beliefs literature” (Rubinstein in Am Econ Rev 79:385–391, 1989; Monderer and Samet in Games Econ Behav 1:170–190, 1989; Morris et al. in Econ J Econ Soc 63:145–157, 1995; Kajii and Morris in Econ J Econ Soc 65:1283–1309, 1997a) and the “payoff uncertainty approach” (Fudenberg et al. in J Econ Theory 44:354–380, 1988; Dekel and Fudenberg in J Econ Theory 52:243–267, 1990).

Keywords

Higher order beliefs Incomplete information Refinements Robustness 

Notes

References

  1. Aumann, R. (1987). Correlated equilibrium as an expression of Bayesian rationality. Econometrica: Journal of the Econometric Society, 55, 1–18.CrossRefGoogle Scholar
  2. Aumann, R., & Brandenburger, A. (1995). Epistemic conditions for Nash equilibrium. Econometrica, 63, 1161–1180.CrossRefGoogle Scholar
  3. Börgers, T. (1994). Weak dominance and approximate common knowledge. Journal of Economic Theory, 64, 265–276.CrossRefGoogle Scholar
  4. Brandenburger, A., & Dekel, E. (1987). Rationalizability and correlated equilibria. Econometrica: Journal of the Econometric Society, 55, 1391–1402.CrossRefGoogle Scholar
  5. Carlsson, H., & van Damme, E. (1993a). Global games and equilibrium selection. Econometrica: Journal of the Econometric Society, 61, 989–1018.CrossRefGoogle Scholar
  6. Carlsson, H., & van Damme, E. (1993b). Equilibrium selection in stag hunt games. In K. Binmore, A. Kirman, & A. Tani (Eds.), Frontiers of game theory. Cambridge: MIT Press.Google Scholar
  7. Dekel, E., & Fudenberg, D. (1990). Rational behavior with payoff uncertainty. Journal of Economic Theory, 52, 243–267.CrossRefGoogle Scholar
  8. Dekel, E., & Gul, F. (1997). Rationality and knowledge in game theory. In D. Kreps & K. Wallis (Eds.), Advances in economics and econometrics: Seventh World Congress of the Econometric Society (Vol. 1). Cambridge: Cambridge University Press.Google Scholar
  9. Dhillon, A., & Mertens, J. (1996). Perfect correlated equilibria. Journal of Economic Theory, 68, 279–302.CrossRefGoogle Scholar
  10. Fudenberg, D., Kreps, D., & Levine, D. (1988). On the robustness of equilibrium refinements. Journal of Economic Theory, 44, 354–380.CrossRefGoogle Scholar
  11. Fudenberg, D., & Tirole, J. (1991). Game theory. Cambridge: M.I.T. Press.Google Scholar
  12. Gul, F. (1996). Rationality and coherent theories of rational behavior. Journal of Economic Theory, 70, 1–31.CrossRefGoogle Scholar
  13. Harsanyi, J., & Selten, R. (1988). A general theory of equilibrium selection in games. Cambridge: M.I.T. Press.Google Scholar
  14. Kajii, A., & Morris S. (1995). The robustness of equilibria to incomplete information. In CARESS working paper 95–18, University of Pennsylvania.Google Scholar
  15. Kajii, A., & Morris, S. (1997a). The robustness of equilibria to incomplete information. Econometrica: Journal of the Econometric Society, 65, 1283–1309.CrossRefGoogle Scholar
  16. Kajii, A., & Morris, S. (1997b). Payoff continuity in incomplete information games. In Northwestern University, Center for mathematical studies in economics and management science. Discussion Paper 1193 (appeared in Journal of Economic Theory in 1998).Google Scholar
  17. Kim, Y. (1996). Equilibrium selection in $n$-person coordination games. Games and Economic Behavior, 15, 203–227.CrossRefGoogle Scholar
  18. Kohlberg, E., & Mertens, J.-F. (1986). On the strategic stability of equilibria. Econometrica: Journal of the Econometric Society, 54, 1003–1038.CrossRefGoogle Scholar
  19. Kreps, D. (1990). Game theory and economic modelling. Oxford: Clarendon Press.CrossRefGoogle Scholar
  20. Monderer, D., & Samet, D. (1989). Approximating common knowledge with common beliefs. Games and Economic Behavior, 1, 170–190.CrossRefGoogle Scholar
  21. Monderer, D., & Samet, D. (1996). Proximity of information in games with incomplete information. Mathematics of Operations Research, 21, 707–725.CrossRefGoogle Scholar
  22. Morris, S. (1997). Interaction games: A unified analysis of incomplete information, local interaction and random matching. In Santa Fe Institute Working Paper #97-08-072 E.Google Scholar
  23. Morris, S., Rob, R., & Shin, H. (1995). $p$-Dominance and belief potential. Econometrica: Journal of the Econometric Society, 63, 145–157.CrossRefGoogle Scholar
  24. Myerson, R. (1978). Refinements of the Nash equilibrium concept. International Journal of Game Theory, 7, 73–80.CrossRefGoogle Scholar
  25. Myerson, R. (1986). Acceptable and predominant correlated equilibria. International Journal of Game Theory, 15, 133–154.CrossRefGoogle Scholar
  26. Okada, A. (1981). On the stability of perfect equilibrium points. International Journal of Game Theory, 10, 67–73.CrossRefGoogle Scholar
  27. Pearce, D. (1984). Rationalizable strategic behavior and the problem of perfection. Econometrica: Journal of the Econometric Society, 52, 1029–1050.CrossRefGoogle Scholar
  28. Rubinstein, A. (1989). The electronic mail game: Strategic behavior under almost common knowledge. American Economic Review, 79, 385–391.Google Scholar
  29. Selten, R. (1965). Spieltheoretische Behandlung eines Oligopolmodells mit Nachfrageträgheit. Zeitschrift für die Gesamte Staatswissenschaft, 12, 301–324.Google Scholar
  30. Selten, R. (1975). Reexamination of the perfectness concept for equilibrium points in extensive games. International Journal of Game Theory, 4, 25–55.CrossRefGoogle Scholar
  31. van Damme, E. (1991). Stability and perfection of Nash equilibria. Berlin: Springer.CrossRefGoogle Scholar
  32. Wu, W., & Jiang, J. (1962). Essential equilibrium points of $n$-person non-cooperative games. Scientica Sinica, 11, 1307–1322.Google Scholar

Copyright information

© Japanese Economic Association 2020

Authors and Affiliations

  • Atsushi Kajii
    • 1
    • 4
  • Stephen Morris
    • 2
    • 3
    • 5
  1. 1.Institute of Policy and Planning SciencesUniversity of TsukubaTsukubaJapan
  2. 2.Northwestern UniversityChicagoUSA
  3. 3.University of PennsylvaniaPhiladelphiaUSA
  4. 4.Kwansei Gakuin UniversityNishinomiyaJapan
  5. 5.Massachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations