Advertisement

Accounting tropical forest carbon stock with synergistic use of space-borne ALOS PALSAR and COSMO-Skymed SAR sensors

  • Suman SinhaEmail author
  • A. Santra
  • A. K. Das
  • L. K. Sharma
  • Shiv Mohan
  • M. S. Nathawat
  • S. S. Mitra
  • C. Jeganathan
Research Article

Abstract

The objective of this study is to precisely quantify the forest aboveground biomass (AGB) and carbon stock in a tropical deciduous forest with synergistic use of space-borne L-band ALOS PALSAR and X-band COSMO-Skymed SAR data, along with field inventory data. AGB serves as a decisive parameter for preparing global decision making policy targeting the impact of reducing emissions from deforestation and forest degradation and climate change. The study proposed optimal regression models for assessing above-ground bole biomass over tropical deciduous mixed forests of Munger (Bihar, India) with synergistic use of ALOS PALSAR and COSMO-Skymed sigma nought images. Coefficient of determination (r2) of 0.89 and RMSE of 15.12 Mg ha−1 were calculated for the best fit integrated model. On validation, the integrated model produced a model accuracy of 78%, r2 = 0.89, RMSE = 16.64 Mg ha−1 and Willmott’s index of agreement of 0.934. Resulting modeled AGB were converted to carbon and carbon dioxide equivalents using conversion factors. L-band showed higher accuracy in the estimation in comparison to X-band; but the estimation accuracy improved with the synergistic use of both X- and L-band SAR data. Hence, the study recommends the combined use of X- and L-band SAR with exceptional capabilities for improved assessment of tropical forest stand AGB and carbon with significant contribution towards operational forestry and policy making.

Keywords

Aboveground biomass Backscatter L-band Remote sensing Synergy regression model Synthetic aperture radar X-band 

Notes

Acknowledgements

This work was supported by the Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Government of India under Grant [File Number: PDF/2015/000043/EAS].

References

  1. Alappat VO, Joshi AK, Krishnamurthy YVN (2011) Tropical dry deciduous forest stand variable estimation using SAR data. J Indian Soc Remote Sens 39:583–589CrossRefGoogle Scholar
  2. Behera MD, Tripathi P, Mishra B, Kumar S, Chitale VS, Behera SK (2016) Above-ground biomass and carbon estimates of Shorea robusta and Tectona grandis forests using QuadPOL ALOS PALSAR data. Adv Space Res 57:552–561CrossRefGoogle Scholar
  3. Betts RA, Jones CD, Knight JR, Keeling RF, Kennedy JJ (2016) El Niño and a record CO2 rise. Nat Clim Change 6:806–810CrossRefGoogle Scholar
  4. Castillo JAA, Apan AA, Maraseni TN, Salmo SG III (2017) Estimation and mapping of above-ground biomass of mangrove forests and their replacement land uses in the Philippines using Sentinel imagery. ISPRS J Photogramm Remote Sens 134:70–85CrossRefGoogle Scholar
  5. Englhart S, Keuck V, Siegert F (2011) Aboveground biomass retrieval in tropical forests—the potential of combined X- and L-band SAR data use. Remote Sens Environ 115:1260–1271CrossRefGoogle Scholar
  6. Englhart S, Keuck V, Siegert F (2012) Modeling aboveground biomass in tropical forests using multi-frequency SAR data—a comparison of methods. IEEE J Sel Top Appl Earth Obs Remote Sens 5(1):298–306CrossRefGoogle Scholar
  7. FRI (1996) Indian Woods. Forest Research Institute, DehradunGoogle Scholar
  8. FSI (1996) Volume equations for forests of India, Nepal and Bhutan. Forest Survey of India, Ministry of Environment and Forests, Govt. of India, DehradunGoogle Scholar
  9. Ghasemi N, Sahebi MR, Mohammadzadeh A (2011) A review on biomass estimation methods using synthetic aperture radar data. Int J Geomat Geosci 1(4):776–788Google Scholar
  10. Ghosh SM, Behera MD (2018) Aboveground biomass estimation using multi-sensor data synergy and machine learning algorithms in a dense tropical forest. Appl Geogr 96:29–40CrossRefGoogle Scholar
  11. Goïta K, Mouloungou J, Bénié GB (2017) Estimation of aboveground biomass and carbon in a tropical rain forest in Gabon using remote sensing and GPS data. Geocarto Int.  https://doi.org/10.1080/10106049.2017.1386720 Google Scholar
  12. Hamdan O, Aziz HK, Rahman KA (2011) Remotely sensed L-band SAR data for tropical forest biomass estimation. J Trop For Sci 23:318–327Google Scholar
  13. Häme T, Rauste Y, Antropov O, Ahola HA, Kilpi J (2013) Improved mapping of tropical forests with optical and SAR imagery, part II: above ground biomass estimation. IEEE J Sel Top Appl Earth Obs Remote Sens 6(1):92–101CrossRefGoogle Scholar
  14. Hyde P, Dubayah R, Walker W, Blair JB, Hofton M, Hunsaker C (2006) Mapping forest structure for wildlife habitat analysis using multi-sensor (LiDAR, SAR/InSAR, ETM + , Quickbird) synergy. Remote Sens Environ 102:63–73CrossRefGoogle Scholar
  15. Kumar S (2009) Retrieval of forest parameters from Envisat ASAR data for biomass inventory in Dudhwa National Park, UP, India. Master’s thesis. Institute of Remote Sensing (IIRS), Dehradun, Indian and University of Twente (ITC), Enschede, NetherlandsGoogle Scholar
  16. Kumar P, Sharma LK, Pandey PC, Sinha S, Nathawat MS (2013) Geospatial strategy for tropical forest-wildlife reserve biomass estimation. IEEE J Sel Top Appl Earth Obs Remote Sens 6(2):917–923CrossRefGoogle Scholar
  17. Kumar S, Khati UG, Chandola S, Agrawal S, Kushwaha SPS (2017) Polarimetric SAR Interferometry based modeling for tree height and aboveground biomass retrieval in a tropical deciduous forest. Adv Space Res 60:571–586CrossRefGoogle Scholar
  18. Lu D (2006) The potential and challenge of remote sensing based biomass estimation. Int J Remote Sens 27:1297–1328CrossRefGoogle Scholar
  19. Lucas RM, Cronin N, Lee A, Moghaddam M, Witte C, Tickle P (2006) Empirical relationships between AIRSAR backscatter and LiDAR-derived forest biomass, Queensland, Australia. Remote Sens Environ 100(3):407–425CrossRefGoogle Scholar
  20. Mushtaq H, Malik T (2014) Accounting carbon dioxide emission and stratification of carbon stock in Western Ghats, India. A geospatial approach. Int J Remote Sens Geosci 3:1–5Google Scholar
  21. Nizalapur V, Jha CS, Madugundu R (2010) Estimation of above ground biomass in Indian tropical forested area using multi-frequency DLR-ESAR data. Int J Geomat Geosci 1(2):167–178Google Scholar
  22. Pandey U, Kushwaha SPS, Kachhwaha TS, Kunwar P, Dadhwal VK (2010) Potential of Envisat ASAR data for woody biomass assessment. Trop Ecol 51(1):117–124Google Scholar
  23. Rashid I, Bhat MA, Romshoo SA (2017) Assessing changes in the above ground biomass and carbon stocks of Lidder valley, Kashmir Himalaya, India. Geocarto Int 32(7):717–734CrossRefGoogle Scholar
  24. Sambatti JBM, Leduc R, Lübeck D, Moreira JR, dos Santos JR (2012) Assessing forest biomass and exploration in the Brazilian Amazon with airborne InSAR: an alternative for REDD. Open Remote Sens J 5:21–36CrossRefGoogle Scholar
  25. Santi E, Palosciaa S, Pettinato S, Fontanelli G, Mura M, Zolli C, Maselli F, Chiesi M, Bottai L, Chirici G (2017) The potential of multifrequency SAR images for estimating forest biomass in Mediterranean areas. Remote Sens Environ 200:63–73CrossRefGoogle Scholar
  26. Sarker MLR (2010) Estimation of forest biomass using remote sensing. Ph.D. thesis. The Hong Kong Polytechnic University, Hong KongGoogle Scholar
  27. Sharma LK, Nathawat MS, Sinha S (2013) Top-down and bottom-up inventory approach for above ground forest biomass and carbon monitoring in REDD framework using multi-resolution satellite data. Environ Monit Assess 185:8621–8637CrossRefGoogle Scholar
  28. Shimada M, Isoguchi O, Tadono T, Isono K (2009) PALSAR radiometric and geometric calibration. IEEE Trans Geosci Remote Sens 47(12):3915–3932CrossRefGoogle Scholar
  29. Sinha S, Jeganathan C, Sharma LK, Nathawat MS (2015) A review of radar remote sensing for biomass estimation. Int J Environ Sci Technol 12:1779–1792CrossRefGoogle Scholar
  30. Sinha S, Jeganathan C, Sharma LK, Nathawat MS, Das AK, Mohan S (2016) Developing synergy regression models with space-borne ALOS PALSAR and Landsat TM sensors for retrieving tropical forest biomass. J Earth Syst Sci 125:725–735CrossRefGoogle Scholar
  31. Sinha S, Santra A, Sharma LK, Jeganathan C, Nathawat MS, Das AK, Mohan S (2018) Multi-polarized Radarsat-2 satellite sensor in assessing forest vigor from above ground biomass. J For Res 29(4):1139–1145CrossRefGoogle Scholar
  32. Waikhom AC, Nath AJ, Yadava PS (2017) Aboveground biomass and carbon stock in the largest sacred grove of Manipur, Northeast India. J For Res 29(2):425–428CrossRefGoogle Scholar
  33. Wollersheim M, Collins MJ, Leckie D (2011) Estimating boreal forest species type with airborne polarimetric synthetic aperture radar. Int J Remote Sens 32:2481–2505CrossRefGoogle Scholar

Copyright information

© International Society for Tropical Ecology 2019

Authors and Affiliations

  • Suman Sinha
    • 1
    Email author
  • A. Santra
    • 1
  • A. K. Das
    • 2
  • L. K. Sharma
    • 3
  • Shiv Mohan
    • 4
  • M. S. Nathawat
    • 5
  • S. S. Mitra
    • 1
  • C. Jeganathan
    • 6
  1. 1.Department of Civil EngineeringHaldia Institute of TechnologyHaldiaIndia
  2. 2.Space Applications CentreIndian Space Research OrganizationAhmedabadIndia
  3. 3.Department of Environmental ScienceCentral University of RajasthanAjmerIndia
  4. 4.PLANEXPhysical Research LaboratoryAhmedabadIndia
  5. 5.School of SciencesIndira Gandhi National Open University (IGNOU)New DelhiIndia
  6. 6.Department of Remote SensingBirla Institute of TechnologyMesraIndia

Personalised recommendations